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Measuring Parallel Processor

Performance

Many metrics are used for measuring the performance of a parallel
algorithm running on a parallel processor. This article introduces a new
metric that has some advantages over the others. Its use is illustrated
with data from the Linpack benchmark report and the winners of the

Gordon Bell Award.

Alan H. Karp and Horace P. Flatt

There are many ways to measure the performance of a
parallel algorithm running on a parallel processor. The
most commonly used measurements are the elapsed
time, price/performance, the speed-up, and the effi-
ciency. This article defines another metric which re-
veals aspects of the performance that are not easily
discerned from the other metrics.

The elapsed time to run a particular job on a given
machine is the most important metric. A Cray Y-MP/1
solves the order 1,000 linear system in 2.17 seconds
compared to 445 seconds for a Sequent Balance 21000
with 30 processors [2]. If you can afford the Cray and
you spend most of your time factoring large matrices,
then you should buy a Cray.

Price/performance of a parallel system is simply the
elapsed time for a program divided by the cost of the
machine that ran the job. It is important if there are a
group of machines that are “fast enough.” Given a fixed
amount of money, it may be to your advantage to buy a
number of slow machines rather than one fast machine.
This is particularly true if you have many jobs to run
and a limited budget. In the previous example, the
Sequent Balance is a superior price/performer than
the Cray if it costs less than 0.5 percent as much. On
the other hand, if you can’t wait 7 minutes for the
answer, the Sequent is not a good buy even if it wins
in price/performance.

These two measurements are used to help you decide
what machine to buy. Once you have bought the ma-
chine, speed-up and efficiency are the measurements
often used to let you know how effectively you are
using it.

The speed-up is generally measured by running the
same program on a varying number of processors. The
speed-up is then the elapsed time needed by 1 proces-
sor divided by the time needed on p processors, s =
T(1)/T(p). (Of course, the correct time for the unipro-
cessor run would be the time for the best serial algo-
rithm, but almost nobody bothers to write two pro-
grams.) If you are interested in studying algorithms for
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parallel processors, and system A gives a higher speed-
up than system B for the same program, then you
would say that system A provides better support for
parallelizing this program than does system B.

An example of such support is the presence of more
processors. A Sequent with 30 processors will almost
certainly produce a higher speed-up than a Cray with
only 8 processors.

The issue of efficiency is related to that of price/
performance. It is usually defined as
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Efficiency close to unity means that you are using your
hardware effectively; low efficiency means that you are
wasting resources. As a practical matter, you may buy a
system with 100 processors that each takes 100 times
longer than you are willing to wait to solve your prob-
lem. If you can code your problem to run at high effi-
ciency, you’ll be happy. Of course, if you have 200
processors, you may not be unhappy with 50 percent
efficiency, particularly if the 200 processors cost less
than other machines that you can use.

Each of these metrics has disadvantages. In fact,
there is important information that cannot be obtained
even by looking at all of them. It is obvious that adding
processors should reduce the elapsed time, but by how
much? That is where speed-up comes in. Speed-up
close to linear is good news, but how close to linear is
good enough? Well, efficiency will tell you how close
you are getting to the best your hardware can do, but if
your efficiency is not particularly high, why? The new
metric defined in the following section is intended to
answer these questions.

NEW METRIC

We will now derive our new metric, the experimen-
tally determined serial fraction, and show why it is
useful. We will start with Amdahl’s Law [1] which in
its simplest form says that
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where T, is the time laken by the part of the program
that must be run serially and T, is the time in the
parallelizable part. Obviously, T(1) = T; + T,. If we
define the fraction serial, f = T, /T(1) then equation (2)
can be written as
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1 1~f
-=f4y—2, 4
3 f+ p @)

We can now solve for the serial fraction, namely

_1/s=1/p
Y

The experimentally determined serial fraction is our
new metric. While this quantity is mentioned in a large
percentage of papers on parallel algorithms, it is vir-
tually never used as a diagnostic tool the way speed-
up and efficiency are. It is our purpose to correct this
situation.

The value of f is useful because equation (2) is incom-
plete. First, it assumes that all processors compute for
the same amount of time, i.e., the work is perfectly load
balanced. If some processors take longer than others,
the measured speed-up will be reduced giving a larger
measured serial fraction. Second, there is a term
missing that represents the overhead of synchronizing
Processors.

Load-balancing effects are likely to result in an irreg-
ular change in f as p increases. For example, if you
have 12 pieces of work to do that take the same amount
of time, you will have perfect load balancing for 2, 3, 4,
6, and 12 processors, but less than perfect load balanc-
ing for other values of p. Since a larger load imbalance
results in a larger increase in f, you can identify prob-
lems not apparent from speed-up or efficiency.

The overhead of synchronizing processors is a mono-
tonically increasing function of p, typically assumed to
increase either linearly in p or as log p. Since increasing
overhead decreases the speed-up, this effect results in a
smooth increase in the serial fraction f as p increases.
Smoothly increasing f is a warning that the granularity
of the parallel tasks is too fine.

A third effect is the potential reduction of vector
lengths for certain parallelizations of a particular algo-
rithm. Vector processor performance normally in-
creases as vector length increases except for vector
lengths slightly larger than the length of the vector reg-
isters. If the parallelization breaks up long vectors into
shorter vectors, the time to execute the job can in-
crease. This effect then also leads to a smooth increase
in the measured serial fraction as the number of pro-
cessors increases. However, large jobs usually have
very long vectors, vector processors usually have only a

f (5)
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few processors (the Intel iPSC-VX is an exception), and
there are usually parallelizations that keep the vector
lengths fixed. Thus, the reduction in vector length is
rarely a problem and can often be avoided entirely.

In order to see the advantage of the serial fraction
over the other metrics, look at Table I which is ex-
tracted from Table 2 of the Linpack report [2]. The
Cray Y-MP shows speed-ups ranging from 1.95 to 6.96.
Is that good? Even if you look at the efficiency, which
ranges from 0.975 to 0.870, you still don’t know. Why
does the efficiency fall so rapidly? Is there a lot of
overhead when using 8 processors? The serial fraction,
f, answers the question; the serial fraction is nearly
constant for all values of p. The loss of efficiency is due
to the limited parallelism of the program.

The single data point for the Sequent Balance reveals
that f performs better as a metric as the number of
processors grows. The efficiency of the 30 processor
Sequent is only 83 percent. Is that good? Yes, it is since
the serial fraction is only 0.007.

The data for the Alliant FX/40 shows something dif-
ferent. Here the speed-up ranges from 1.90 to 3.22 and
the efficiency from 0.950 to 0.805. Although neither of
these measurements tells much, the fact that f ranges
from 0.053 to 0.080 does; there is some overhead that is
increasing as the number of processors grows. We can’t
tell what this overhead is due to—synchronization cost,
memory contention, or what—but at least we know it
is there. The effect on the FX/80 is much smaller al-
though there is a slight increase in f, especially for
fewer than 5 processors.

Even relatively subtle effects can be seen. The IBM
3090 has a serial fraction under 0.007 for 2 and 3 pro-
cessors, but over 0.011 for 4 or more. Here the reason is
most likely due to the machine configuration; each set
of 3 processors is in a single frame and shares a mem-
ory management unit. Overhead increases slightly
when two of these units must coordinate their activi-
ties. This effect also shows up on the 3090-280S which
has two processors in two frames. Its run has twice the
serial fraction as does the run on the 3090-200S. None
of the other metrics would have revealed this effect.

Another subtle effect shows up on the Convex. The
4 processor C-240 shows a smaller serial fraction than
does the 2 processor C-220. Since the same code was
presumably run on both machines, the actual serial
fraction must be the same. How can the measured
value decrease? This appears to be similar to the
“superlinear” speed-ups reported on some machines. As
in those cases, adding processors adds cache and mem-
ory bandwidth which reduces overhead. Perhaps that is
the case here.

Care must be used when comparing different ma-
chines. For example, the serial fraction on the Cray is 3
times larger than on the Sequent. Is the Cray really that
inefficient? The answer is no. Since almost all the par-
allel work can be vectorized, the Cray spends relatively
less time in the parallel part of the code than does the
Sequent which has no vector unit. Since the parallel-
izable part speeds up more than the serial part which
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Table I. Summary of Linpack report Table 2

Computer P Time(sec) s e f

Cray Y-MP/8 1 2.7 — - —

Cray Y-MP/8 2 1.11 1.95 0.975 0.024
Cray Y-MP/8 3 0.754 2.88 0.960 0.021
Cray Y-MP/8 4 0.577 3.76 0.940 0.021
Cray Y-MP/8 8 0.312 6.96 0.870 0.021
IBM 3090-180S VF 1 7.27 - — —

IBM 3090-200S VF 2 3.64 2.00 1.000 0.002
IBM 3090-280S VF 2 3.65 1.99 0.995 0.004
IBM 3090-300S VF 3 2.46 2.96 0.987 0.007
IBM 3090-400S VF 4 1.89 3.85 0.963 0.013
IBM 3090-500S VF 5 1.52 4.78 0.956 0.011
[BM 3090-600S VF 6 1.29 5.64 0.940 0.012
Alfiant FX/40 1 66.1 — — -

Alliant FX/40 2 34.8 1.90 0.950 0.053
Alliant FX/40 3 24.9 2.65 0.883 0.066
Alliant FX/40 4 20.5 3.22 0.805 0.080
Alliant FX/80 1 57.7 — — —

Alliant FX/80 2 29.8 1.94 0.970 0.032
Alliant FX/80 3 20.7 2.79 0.930 0.038
Alliant FX/80 4 16.2 3.56 0.890 0.041
Alliant FX/80 5 13.6 4.24 0.848 0.045
Alliant FX/80 6 11.8 4.89 0.815 0.046
Alliant FX/80 7 10.6 5.44 0.777 0.048
Alliant FX/80 8 9.64 5.99 0.749 0.048
Sequent 1 1N - - -

Sequent 30 445 25.0 0.833 0.007
Convex C-210 1 15 — - -

Convex C-220 2 7.98 1.88 0.940 0.064
Convex C-240 4 4.03 3.72 0.930 0.025

Note: p=#processors, s=speed-up, e=efficiency, f=serial fraction

has less vector content, the fraction of the time spent in
serial code is increased.

The Linpack benchmark report measures the perfor-
mance of a computational kernel running on machines
with no more than 30 processors. The results in Table II
are taken from the work of the winners of the Gordon
Bell Award [5]. Three applications are shown with
maximum speed-ups of 639, 519, and 351 and efficien-
cies ranging from 0.9965 to 0.3430. We know this is
good work since they won the award, but how good
a job did they do? The serial fraction ranges from
0.00051 to 0.0019 indicating that they did a very good
job, indeed.

The serial fraction reveals an interesting point. On all
three problems, there is a significant reduction in the
serial fraction in going from 4 to 16 processors (from 16
to 64 for the wave motion problem). As with the Con-
vex results, these numbers indicate something akin to
“superlinear” speed-up. Perhaps the 4-processor run
sends longer messages than does the 16-processor run,
and these longer messages are too long for the system to
handle efficiently. At any rate, the serial fraction has
pointed up an inconsistency that needs further study.
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SCALED SPEED-UP
All the analysis presented so far refers to problems of
fixed size. Gustafson [4] has argued that this is not how
parallel processors are used. He argues that users will
increase their problem size to keep the elapsed time of
the run more or less constant. As the problem size
grows, we should find the fraction of the time spent
executing serial code decreases, leading us to predict a
decrease in the measured serial fraction.

If we assume that the serial time and overhead are
independent of problem size, neither of which is fully
justified, [3]

T(p, k)=Ts+k—;E,

(6)
where T(p, k) is the time to run the program on p
processors for a problem needing k times more arith-
metic. Here k is the scaling factor and k = 1 when p = 1.
Flatt [3] points out that the scaling factor k must count
arithmetic, not some more convenient measure such as
memory size.

Our definition of speed-up must now account for the
additional arithmetic that must be done to solve our
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Table Il. Summary of Bell Award winning performance

stops. A better scaling would be one in which the time
integration is continued to a specific value.

P i - e f If the run time were still held constant, the problems
Wave Motion would scale more slowly than linearly in p. In these
11; 1%'226 ggg?g 888357 examples. the Courant condition limits the step size
64 62'01 0.9689 0.00051 which means that the correct scaling would be k = Vp.
’ ) ) The scaling chosen for the problems of Table III is
256 226.2 0.8836 0.00052
1024 639.0 0.6240 0.000s9 k=p .
Fluid Dynamics As predicted [3). the efficiency decreases. barely. as p
4 3.959 0.9898 0.0035 increascs even for scaled problems. The scaled scrial
16 15.47 0.9669 0.0023 fraction. on the other hand. decreases smoothly. This
64 98.53 0.9145 0.0015 fact tells us that the decreasing efficiency is not caused
256 201.6 0.7875 0.0011 by a growing serial fraction. Instead it tells us the
1024 519.1 0.5069 0.00095 problem size is not growing fast enough to completely
4 3.954 Beam Stresg 9885 0.0039 counter the loss of efficiency as more processors are
16 15.46 0.9663 0op3 ~ added lom si , makes
64 57.46 08978 0.0018 . T.h(? variation in fi as t‘he problem size grows makes
256 177.5 0.6934 0.0017 it difficult to interpret. If we allow fo.r the fact that
1024 351.2 0.3430 0.0019 ideally the increase in the problem size docs not affect

Note: p=#processors, s=speed-up, e=efficiency, f=serial fraction

larger problem. We can use

kT (1, 1)

=Tk )

The scaled efficiency is then ¢x = s;/p. and the scaled
serial fraction becomes

f_l/sk—l/p
" 1—-1/p '

By our previous definitions we see that f = kf; which
under ideal circumstances would remain constant as p
increases.

The scaled results are shown in Table IIl. Although

(8)

the serial work. we again have a metric that should
remain constant as the problem size grows. Table IlI
shows how kf, varies with problem size. We see that
this quantity grows slowly for the wave motion prob-
lem, but that there is virtually no increase for the fluid
dvnamics problem. These results indicale that the se-
rial work increases for the wave motion problem as the
problem size grows but not for the fluid dynamics prob-
lem. The irregular behavior of kf; for the beam stress
problem warrants further study.

SUMMARY

We have shown that the measured serial fraction. f,
provides information not revealed by other commonly
used metrics. The metric, properly defined. may also be
useful if the problem size is allowed to increase with
the number of processors.

these runs take constant time as the problem size
grows, the larger problems were run with shorter time

What makes the experimentally determined serial
fraction such a good diagnostic tool of potential per-

Table Ill. Bell Award scaled problems. k=p

p Sk €y fi kfy
Wave Motion
4 3.998 0.9995 0.00013 0.00053
16 15.95 0.9969 0.00020 0.0032
64 63.61 0.9939 0.000097 0.0062
256 2541 0.9926 0.000029 0.0074
1024 1014 0.9902 0.0000098 0.010
Fluid Dynamics
4 3.992 0.9980 0.00067 0.0027
16 15.96 0.9975 0.00015 0.0024
64 63.82 0.9972 0.000046 0.0029
256 255.2 0.9969 0.000013 0.0033
1024 1020 0.9961 0.0000033 0.0034
Beam Stress
4 4.001 1.000 0.0 0.0
16 16.00 1.000 0.000021 0.00034
64 63.96 0.9994 0.000015 0.00098
256 255.8 0.9992 0.0000038 0.00096
1024 1023 0.9990 0.0000012 0.0013

Note: p=#processors, s,=scaled speed-up, e,=scaled efficiency, f,=scaled serial fraction
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formance problems? While elapsed time, speed-up. and
efficiency vary as the number of processors increases,
the serial fraction would remain constant in an ideal
system. Small variations from perfect behavior are
much easier to detect from something that should be
constant than from something that varies. Since kf; for
scaled problems shares this property. it. too. is a useful
tool.

Ignoring the fact that p takes on only integer values
makes it easy to show that

d l

e f {9)

if we ignore the overhead and assume that the serial
fraction is independent of p. Thus. we sec that the se-
rial fraction is a measure of the rate of change of the
efficiency. Even in the ideal case, 1/¢ increases linearly
as the number of processors increases. Any deviation of
1/e from linearity is a sign of lost parallelism. The frac-
tion serial is a particularly convenient measure of this
deviation from linearity.

The case of problem sizes that grow as the number of
processors is increased is only slightly more compli-
cated. In this case

il=ﬂ-+(p—l)%=f(l
dp e, dp  k
If k = 1. i.e.. there is no scaling. equation (10) reduces to
equation (9). If k = p. then 1/¢ has a slope of f/p* which
is a very slow loss of efficiency. Other scalings lie be-
tween these two curves.

It is easy to read too much into the numerical values.
When the efficiency is near unity. 1/s is close to 1/p
which leads to a loss of precision when subtracting in
the numerator of equation (5). If care is not taken, vari-
ations may appear that are mere round-off noise. All
entries in the tables were computed from

_1-1/s
1-1/p°

Since both s and p are considerably greater than
unity and neither 1/s nor 1/p is near the precision of
the floating point arithmetic, there is only one place
where precision can be lost. Rounding the result to the
significance of the reported times guarantees that the
results are accurate. Similarly.

1 1-—- ]/S/\-
1-1/p
is used for the scaled serial fraction.
Although our numerical examples come from rather
simple cases. one of us (Alan Karp) has successfully

used this metric to find a performance bug in one of his
applications. Noting an irregularity in the behavior of f

f=1 (1)

fv = (12)
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led him to examine the way the IBM Parallel Fortran
prototvpe compiler was splitting up the work in the
loops. Due to an oversight. the compiler truncated the
result of dividing the number of loop iterations by the
number of processors, This error meant that one pro-
cessor had to do one exira pass to finish the work in the
loop. For some values of p this remainder was small; for
others. it was large. The solution was to increase his
problem size from 350. which gives perfect load balanc-
ing on his six-processor IBM 3090-600S only for 2 and

5 processors, 10 360 which alwavs balances perfectlv.
(This error was reported to the IBM Parallel Fortran
compiler group.)
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