
ARTICLES

Measuring Parallel Processor
Performance

Many metrics are used for measuring the performance of a parallel
algorithm running on a parallel processor. This article introduces a new
metric that has some advantages over the others. Its use is illustrated
with data from the Linpack benchmark report and the winners of the
Gordon Bell A ward.

Alan H. Karp and Horace P. Flatt

There are many ways to measure the performance of a
parallel algorithm running on a parallel processor. The
most commonly used measurements are the elapsed
time, price/performance, the speed-up, and the effi-
ciency. This article defines another metric which re-
veals aspects of the performance that are not easily
discerned from the other metrics.

The elapsed time to run a particular job on a given
machine is the most important metric. A Cray Y-MP/l
solves the order 1,000 linear system in 2.17 seconds
compared to 445 seconds for a Sequent Balance 21000
with 30 processors [Z]. If you can afford the Cray and
you spend most of your time factoring large matrices,
then you should buy a Cray.

Price/performance of a parallel system is simply the
elapsed time for a program divided by the cost of the
machine that ran the job. It is important if there are a
group of machines that are “fast enough.” Given a fixed
amount of money, it may be to your advantage to buy a
number of slow machines rather than one fast machine.
This is particularly true if you have many jobs to run
and a limited budget. In the previous example, the
Sequent Balance is a superior price/performer than
the Cray if it costs less than 0.5 percent as much. On
the other hand, if you can’t wait 7 minutes for the
answer, the Sequent is not a good buy even if it wins
in price/performance.

These two measurements are used to help you decide
what machine to buy. Once you have bought the ma-
chine, speed-up and efficiency are the measurements
often used to let you know how effectively you are
using it.

The speed-up is generally measured by running the
same program on a varying number of processors. The
speed-up is then the elapsed time needed by 1 proces-
sor divided by the time needed on p processors, s =
T(l)/T(p). (Of course, the correct time for the unipro-
cessor run would be the time for the best serial algo-
rithm, but almost nobody bothers to write two pro-
grams.) If you are interested in studying algorithms for

0 1990 ACM 0001.0782/90/0500-0539 $1.50

parallel processors, and system A gives a higher speed-
up than system B for the same program, then you
would say that system A provides better support for
parallelizing this program than does system B.

An example of such support is the presence of more
processors. A Sequent with 30 processors will almost
certainly produce a higher speed-up than a Cray with
only 8 processors.

The issue of efficiency is related to that of price/
performance. It is usually defined as

T(l) s e=pTo=p.

Efficiency close to unity means that you are using your
hardware effectively; low efficiency means that you are
wasting resources. As a practical matter, you may buy a
system with 100 processors that each takes 100 times
longer than you are willing to wait to solve your prob-
lem. If you can code your problem to run at high effi-
ciency, you’ll be happy. Of course, if you have 200
processors, you may not be unhappy with 50 percent
efficiency, particularly if the 200 processors cost less
than other machines that you can use.

Each of these metrics has disadvantages. In fact,
there is important information that cannot be obtained
even by looking at all of them. It is obvious that adding
processors should reduce the elapsed time, but by how
much? That is where speed-up comes in. Speed-up
close to linear is good news, but how close to linear is
good enough? Well, efficiency will tell you how close
you are getting to the best your hardware can do, but if
your efficiency is not particularly high, why? The new
metric defined in the following section is intended to
answer these questions.

NEW METRIC
We will now derive our new metric, the experimen-
tally determined serial fraction, and show why it is
useful. We will start with Amdahl’s Law [l] which in
its simplest form says that

May 1990 Volume 33 Number 5 Communications of the ACM 539

Articles

where T, is the time taken by the part of the program
that must be run serially and T, is the time in the
parallelizable part. Obviously, T(1) = T, + TP. If we
define the fraction serial, f = T,/T(l) then equation (2)
can be written as

T(p) = T(l)f + T’ll(l - f),
P

or, in terms of the speed-up s

We can now solve for the serial fraction, namely

f=
l/s - l/P

l-l/p

The experimentally cletermined serial fraction is our
new metric. While this quantity is mentioned in a large
percentage of papers on parallel algorithms, it is vir-
tually never used as a diagnostic tool the way speed-
up and efficiency are. It is our purpose to correct this
situation.

The value off is useful because equation (2) is incom-
plete. First, it assumes that all processors compute for
the same amount of time, i.e., the work is perfectly load
balanced. If some processors take longer than others,
the measured speed-up will be reduced giving a larger
measured serial fraction. Second, there is a term
missing that represents the overhead of synchronizing
processors.

Load-balancing effects are likely to result in an irreg-
ular change in f as p increases. For example, if you
have 12 pieces of work to do that take the same amount
of time, you will have perfect load balancing for 2, 3, 4,
6, and 12 processors, but less than perfect load balanc-
ing for other values of p. Since a larger load imbalance
results in a larger inc:rease in f, you can identify prob-
lems not apparent from speed-up or efficiency.

The overhead of synchronizing processors is a mono-
tonically increasing function of p, typically assumed to
increase either linearly in p or as log p. Since increasing
overhead decreases the speed-up, this effect results in a
smooth increase in the serial fraction f as p increases.
Smoothly increasing f is a warning that the granularity
of the parallel tasks is too fine.

A third effect is the potential reduction of vector
lengths for certain parallelizations of a particular algo-
rithm. Vector processor performance normally in-
creases as vector length increases except for vector
lengths slightly larger than the length of the vector reg-
isters. If the parallelization breaks up long vectors into
shorter vectors, the time to execute the job can in-
crease. This effect then also leads to a smooth increase
in the measured serial fraction as the number of pro-
cessors increases. However, large jobs usually have
very long vectors, vector processors usually have only a

few processors (the Intel IPSC-VX is an exception), and
there are usually parallelizations that keep the vector
lengths fixed. Thus, the reduction in vector length is
rarely a problem and can often be avoided entirely.

In order to see the advantage of the serial fraction
over the other metrics, look at Table I which is ex-
tracted from Table 2 of the Linpack report [2]. The
Cray Y-MP shows speed-ups ranging from 1.95 to 6.96.
Is that good? Even if you look at the efficiency, which
ranges from 0.975 to 0.870, you still don’t know. Why
does the efficiency fall so rapidly? Is there a lot of
overhead when using 8 processors? The serial fraction,
f, answers the question: the serial fraction is nearly
constant for all values of p. The loss of efficiency is due
to the limited parallelism of the program.

The single data point for the Sequent Balance reveals
that f performs better as a metric as the number of
processors grows. The efficiency of the 30 processor
Sequent is only 83 percent. Is that good? Yes, it is since
the serial fraction is only 0.007.

The data for the Alliant FX/40 shows something dif-
ferent. Here the speed-up ranges from 1.90 to 3.22 and
the efficiency from 0.950 to 0.805. Although neither of
these measurements tells much, the fact that f ranges
from 0.053 to 0.080 does; there is some overhead that is
increasing as the number of processors grows. We can’t
tell what this overhead is due to-synchronization cost,
memory contention, or what-but at least we know it
is there. The effect on the FX/80 is much smaller al-
though there is a slight increase in f, especially for
fewer than 5 processors.

Even relatively subtle effects can be seen. The IBM
3090 has a serial fraction under 0.007 for 2 and 3 pro-
cessors, but over 0.011 for 4 or more. Here the reason is
most likely due to the machine configuration; each set
of 3 processors is in a single frame and shares a mem-
ory management unit. Overhead increases slightly
when two of these units must coordinate their activi-
ties This effect also shows up on the 3090~280s which
has two processors in two frames. Its run has twice the
serial fraction as does the run on the 3090-2008. None
of the other metrics would have revealed this effect.

Another subtle effect shows up on the Convex. The
4 processor C-240 shows a smaller serial fraction than
does the 2 processor C-220. Since the same code was
presumably run on both machines, the actual serial
fraction must be the same. How can the measured
value decrease? This appears to be similar to the
“superlinear” speed-ups reported on some machines. As
in those cases, adding processors adds cache and mem-
ory bandwidth which reduces overhead. Perhaps that is
the case here.

Care must be used when comparing different ma-
chines. For example, the serial fraction on the Cray is 3
times larger than on the Sequent. Is the Cray really that
inefficient? The answer is no. Since almost all the par-
allel work can be vectorized, the Cray spends relatively
less time in the parallel part of the code than does the
Sequent which has no vector unit. Since the parallel-
izable part speeds up more than the serial part which

540 Communications of the ACM May 1990 Volume 33 Number 5

Computer

Gray Y-MPI8
Cray Y-MPI8
Cray Y-MPI8
Cray Y-MPI8
Cray Y-MPI8

Table I. Summary of Linpack report Table 2

P Time(sec) s e f

1 2.17
1.11 1.95 0.975 0.024 i
0.754 2.88 0.960 0.021
0.577 3.76 0.940 0.021
0.312 6.96 0.870 0.021

IBM 3090-18OSVF 1 7.27 - -
IBM 3090-200SVF 2 3.64 2.00 1.000 0.002
IBM3090-280SVF 2 3.65 1.99 0.995 0.004
IBM3090-300SVF 3 2.46 2.96 0.987 0.007
IBM 3090-400s VF 4 1.89 3.85 0.963 0.013
IBM3090-500SVF 5 1.52 4.78 0.956 0.011
IBM 3090-600SVF 6 1.29 5.64 0.940 0.012

Alliant FX/40 1 66.1
Alliant FX/40 34.8
Alliant FX/40 5 24.9
Alliant FX/40 4 20.5

Alliant FX180 1 57.7
Alliant FX/80 2 29.8
Alliant FX180 3 20.7
Alliant FX180 4 16.2
Alliant FX/80 5 13.6
Alliant FX/80 6 11.8
Alliant FX/80 7 10.6
Alliant FX180 8 9.64

Sequent
3b

11111
Sequent 445

Convex C-210 1 15
Convex C-220 2 7.98
Convex C-240 4 4.03

Note: p=#processors, s=speed-up, e=efficiency, f=serial fraction

- -
1.90 0.950 0.053
2.65 0.883 0.066
3.22 0.805 0.080

1.94
- -

0.970 0.032
2.79 0.930 0.038
3.56 0.890 0.041
4.24 0.848 0.045
4.89 0.815 0.046
5.44 0.777 0.048
5.99 0.749 0.048

25.; 0.833 0.007

-
1.88 0.940 0.064
3.72 0.930 0.025

has less vector content, the fraction of the time spent in
serial code is increased.

SCALED SPEED-UP

The Linpack benchmark report measures the perfor-
mance of a computational kernel running on machines
with no more than 30 processors. The results in Table II
are taken from the work of the winners of the Gordon
Bell Award [5]. Three applications are shown with
maximum speed-ups of 639, 519, and 351 and efficien-
cies ranging from 0.9965 to 0.3430. We know this is
good work since they won the award, but how good
a job did they do? The serial fraction ranges from
9.00051 to 9.0019 indicating that they did a very good
job, indeed.

All the analysis presented so far refers to problems of
fixed size. Gustafson [4] has argued that this is not how
parallel processors are used. He argues that users will
increase their problem size to keep the elapsed time of
the run more or less constant. As the problem size
grows, we should find the fraction of the time spent
executing serial code decreases, leading us to predict a
decrease in the measured serial fraction.

If we assume that the serial time and overhead are
independent of problem size, neither of which is fully
justified, [3]

The serial fraction reveals an interesting point. On all
three problems, there is a significant reduction in the
serial fraction in going from 4 to 16 processors (from 16
to 64 for the wave motion problem). As with the Con-
vex results, these numbers indicate something akin to
“superlinear” speed-up. Perhaps the 4-processor run
sends longer messages than does the 16-processor run,
and these longer messages are too long for the system to
handle efficiently. At any rate, the serial fraction has
pointed up an inconsistency that needs further study.

T(p, k) = T, + ze
P'

(6)

where T(p, k) is the time to run the program on p
processors for a problem needing k times more arith-
metic. Here k is the scaling factor and k = 1 when p = 1.
Flatt [3] points out that the scaling factor k must count
arithmetic, not some more convenient measure such as
memory size.

Our definition of speed-up must now account for the
additional arithmetic that must be done to solve our

May 1990 Volume 33 Number 5 Communications of the ACM 541

Articles

Table II. Summary of Bell Award winning performance

P s e

Wave Motion
4

16
64

256
1024

4

2
256

1024

4
16
64

256
1024

3.986 0.9965
15.86 0.9913
62.01 0.9689

226.2 0.8836
639.0 0.6240

Fluid Dynamics
3.959 0.9898

15.47 0.9669
58.53 0.9145

201.6 0.7875
519.1 0.5069

Beam Stress
3.954 0.9885

15.46 0.9663
57.46 0.8978

177.5 0.6934
351.2 0.3430

f

0.0012
0.00097
0.00051
0.00052
0.00059

0.0035
0.0023
0.0015
0.0011
0.00095

0.0039
0.0023
0.0018
0.0017
0.0019

Note:p=#processors,s=speed-up, e=efficiency, f=serialfraction

larger problem. We can use

kT(1, 1)
sk = T(p, k)

The scaled efficiency is then L’~ = sk/ps and the scaled
serial fraction becomes

fA =
l/sr - l/p

l-1//7
(8)

By our previous definitions WC see that f = kfk which
under ideal circumstances would remain constant as 1~
increases.

The scaled results are shown in Table III. Although
these runs take constant time as the problem size
grows, the larger problems were run with shorter time

steps. A better scaling would be one in which the time
integration is continued to a specific: value.

If the run time were still held constant. the problems
would scale more slowly than linearly in 1’. In these
examples. the Courant condition limits the step size
which means that the correct scaling woulcl be k = v$.
The scaling chosen for the problems of Table III is
k = 17.

As predicted 131. the efficiency decreases. barely. as 11
increases even for scaled problems. The scaled serial
fraction. on the other hand. decreases smoothly. This
fact tells us that the decreasing efficiency is not caused
by a growing serial fraction. Instead it tells us the
problem size is not growing fast enough to completely
counter the loss of efficiency as more processors are
addecl.

The variation in fk as the problem size grows makes
it difficult to intcrprct. I f we allow for the fact that
ideally the increase in the problem size dots not affect
the serial work. we again have a metric that should
remain constant as the problem size grows. Table 111
shows how fcfA varies with problem size. We see that
this quantity grows slowly for the wave motion prob-
lem, but that thcrc is virtually no increase for the fluid
dynamics problem. These results indicate that the se-
rial work increases for the wave motion problem as the
problem size grows but not for the fluid dynamics prob-
lem. The irregular behavior of kfk for the beam stress
problem warrants further study.

SUMMARY
We have shown that the measured serial fraction. fs
provides information not revealed by other commonly
used metrics. The metric. properly defined. may also be
useful if the problem size is allowed to increase with
the number of processors.

What makes the experimentally determined serial
fraction such a good diagnostic tool of potential pcr-

Table Ill. Bell Award scaled Droblems. k=r,

P sk

4 3.998
16 15.95
64 63.61

256 254.1
1024 1014

4 3.992
16 15.96
64 63.82

256 255.2
1024 1020

4 4.001
16 16.00

2;: 255.8 63.96
1024 1023

ek

Wave Motion
0.9995
0.9969
0.9939
0.9926
0.9902

Fluid Dynamics
0.9980
0.9975
0.9972
0.9969
0.9961

Beam Stress
1.000
1.000

0.9994 0.9992
0.9990

fk k fk

0.00013 0.00053
0.00020 0.0032
0.000097 0.0062
0.000029 0.0074
0.0000098 0.010

0.00067 0.0027
0.00015 0.0024
0.000046 0.0029
0.000013 0.0033
0.0000033 0.0034

0.0 0.0
0.000021 0.00034

0.000015 0.0000038 0.00098 0.00096
0.0000012 0.0013

Note: p=#processors, s,=scaled speed-up, e,=scaled efficiency, f,=scaled serial fraction

Mu.11 IY90 Vd~rnre 33 Number 5

formance proldems? While elapsecl time. speed-up. and
efficiency vary as the number of processors increases.
the serial fraction would remain constant in an ideal
system. Small variations from pcrfcct behavior arc
much easier to detect from something that should bc
constant than from something that varies. Since !,fL for
scaled problems shares this property. it. too. is a useful
tool.

Ignoring the fact that ~7 takes on only intcgcr values
makes it easy to show that

ri 1
-=f

IijJ 1’
(9)

if we ignore the overheacl and assume that the serial
fraction is independent of 17. Thus, we WC that the se-
rial fraction is a measure of the rate of change of the
efficiency. Even in the idcal case. l/c increases linearly
as the number of processors increases. Any deviation if
1 /c from linearity is a sign of lost parallelism. The frac-
tion serial is a particularly convenient measure of this
deviation from linearity.

The case of problem sizes that grow as the number of
processors is increased is only slightly more compli-
cated. In this case

If k = 1. i.e.. there is no scaling. equation (10) reduces to
equation (9). I f li = /I. then l/e has a slope of f/j]’ which
is a very slow loss of efficiency. Other scalings lie be-
tween thcsc two curves.

It is easy to read too much into the numerical values.
When the efficiency is near unity. l/s is close to l/p

which leads to a loss of precision when subtracting in
the numerator of equation (5). I f care is not taken. vari-
ations may appear that are mere round-off noise. All
entries in the tables were computed from

(11)

Since both s and p arc considerably greater than
unity and neither l/s nor l/p is near the precision of
the floating point arithmetic. there is only one place
where precision can bc lost. Rouncling the result to the
significance of the reported times guarantees that the
results are accurate. Similarly.

(I’)

is used for the scaled serial fraction.
Although our numerical examples come from rather

simple cases. one of us (Alan Karp) has suc~-~~ssfull~
used this metric to find a performance bug in one of his
applications. Noting an irregularity in the behavior off

led him to examine the way the IBM Parallel I:ortran
prototype compiler was splitting up the work in the
loops. Due to an oversight. the compiler truncated the
result of dividing the number of loop iterations by the
number of processors. This error meant that one pro-
cessor had to do one exlra pass to finish the work in the
loop. For some values of p this rcmainclcr was small: for
others. it was large. The solution was to increase his
problem size from XXI. which gives perfect load balanc-
ing on his six-processor IBM 309(1-600s only for 2 and
5 processors, IO 360 which always balances perfectly.
(This cwor was reported to the IBM Parallel Portran
compiler group.)

r\UOI!T THE AUTHOI~S:

ALAN KARP is a staff n~emhcr at IBhl’s Palo Alto Scicnlific:
Ccntcr. Hc has worked on pr~blcms of r;ldialive Irarlsfer in
moving stellar matter and in planetary atmosphcrcs. hyclro-
dynamics proldcnis in pulsating stars and in onhanc:rd oil
rccoucry. and numerical mcthotls for parsllel proc:essors. Hc
is c:urrr~~lly studying the inlr&:e l~etwren programmers and
parallel proc:cssors wilh special attention to debugging parallel
algorithms.

HORACE P. FLATT is manager of IBM’s Palo Alto Scientific
Ccntcr. He received a Ph.D. in mathcmntics from Ricx Ilnivcr-
sity in 1958. subsequently bcconiing manager of the applied
mathematics group of Atomits International. IIIC. Hc joined
IBM in IWI and has primarily worked in manapcment assign-
ments in applied rcscarch in coniputor systems and applica-
lions. Aulhors’ Prcscnt hddress: IBM Scientific: Cc~~tcr. 1530
Page Mill Road. I’~~lo Alto. CA !&Kw~.

