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Measuring Parallel Processor 
Performance 

Many metrics are used for measuring the performance of a parallel 
algorithm running on a parallel processor. This article introduces a new 
metric that has some advantages over the others. Its use is illustrated 
with data from the Linpack benchmark report and the winners of the 
Gordon Bell A ward. 

Alan H. Karp and Horace P. Flatt 

There are many ways to measure the performance of a 
parallel algorithm running on a parallel processor. The 
most commonly used measurements are the elapsed 
time, price/performance, the speed-up, and the effi- 
ciency. This article defines another metric which re- 
veals aspects of the performance that are not easily 
discerned from the other metrics. 

The elapsed time to run a particular job on a given 
machine is the most important metric. A Cray Y-MP/l 
solves the order 1,000 linear system in 2.17 seconds 
compared to 445 seconds for a Sequent Balance 21000 
with 30 processors [Z]. If you can afford the Cray and 
you spend most of your time factoring large matrices, 
then you should buy a Cray. 

Price/performance of a parallel system is simply the 
elapsed time for a program divided by the cost of the 
machine that ran the job. It is important if there are a 
group of machines that are “fast enough.” Given a fixed 
amount of money, it may be to your advantage to buy a 
number of slow machines rather than one fast machine. 
This is particularly true if you have many jobs to run 
and a limited budget. In the previous example, the 
Sequent Balance is a superior price/performer than 
the Cray if it costs less than 0.5 percent as much. On 
the other hand, if you can’t wait 7 minutes for the 
answer, the Sequent is not a good buy even if it wins 
in price/performance. 

These two measurements are used to help you decide 
what machine to buy. Once you have bought the ma- 
chine, speed-up and efficiency are the measurements 
often used to let you know how effectively you are 
using it. 

The speed-up is generally measured by running the 
same program on a varying number of processors. The 
speed-up is then the elapsed time needed by 1 proces- 
sor divided by the time needed on p processors, s = 
T(l)/T(p). (Of course, the correct time for the unipro- 
cessor run would be the time for the best serial algo- 
rithm, but almost nobody bothers to write two pro- 
grams.) If you are interested in studying algorithms for 
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parallel processors, and system A gives a higher speed- 
up than system B for the same program, then you 
would say that system A provides better support for 
parallelizing this program than does system B. 

An example of such support is the presence of more 
processors. A Sequent with 30 processors will almost 
certainly produce a higher speed-up than a Cray with 
only 8 processors. 

The issue of efficiency is related to that of price/ 
performance. It is usually defined as 

T(l) s e=pTo=p. 

Efficiency close to unity means that you are using your 
hardware effectively; low efficiency means that you are 
wasting resources. As a practical matter, you may buy a 
system with 100 processors that each takes 100 times 
longer than you are willing to wait to solve your prob- 
lem. If you can code your problem to run at high effi- 
ciency, you’ll be happy. Of course, if you have 200 
processors, you may not be unhappy with 50 percent 
efficiency, particularly if the 200 processors cost less 
than other machines that you can use. 

Each of these metrics has disadvantages. In fact, 
there is important information that cannot be obtained 
even by looking at all of them. It is obvious that adding 
processors should reduce the elapsed time, but by how 
much? That is where speed-up comes in. Speed-up 
close to linear is good news, but how close to linear is 
good enough? Well, efficiency will tell you how close 
you are getting to the best your hardware can do, but if 
your efficiency is not particularly high, why? The new 
metric defined in the following section is intended to 
answer these questions. 

NEW METRIC 
We will now derive our new metric, the experimen- 
tally determined serial fraction, and show why it is 
useful. We will start with Amdahl’s Law [l] which in 
its simplest form says that 
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where T, is the time taken by the part of the program 
that must be run serially and T, is the time in the 
parallelizable part. Obviously, T(1) = T, + TP. If we 
define the fraction serial, f = T,/T(l) then equation (2) 
can be written as 

T(p) = T(l)f + T’ll(l - f), 
P 

or, in terms of the speed-up s 

We can now solve for the serial fraction, namely 

f= 
l/s - l/P 

l-l/p 

The experimentally cletermined serial fraction is our 
new metric. While this quantity is mentioned in a large 
percentage of papers on parallel algorithms, it is vir- 
tually never used as a diagnostic tool the way speed- 
up and efficiency are. It is our purpose to correct this 
situation. 

The value off is useful because equation (2) is incom- 
plete. First, it assumes that all processors compute for 
the same amount of time, i.e., the work is perfectly load 
balanced. If some processors take longer than others, 
the measured speed-up will be reduced giving a larger 
measured serial fraction. Second, there is a term 
missing that represents the overhead of synchronizing 
processors. 

Load-balancing effects are likely to result in an irreg- 
ular change in f as p increases. For example, if you 
have 12 pieces of work to do that take the same amount 
of time, you will have perfect load balancing for 2, 3, 4, 
6, and 12 processors, but less than perfect load balanc- 
ing for other values of p. Since a larger load imbalance 
results in a larger inc:rease in f, you can identify prob- 
lems not apparent from speed-up or efficiency. 

The overhead of synchronizing processors is a mono- 
tonically increasing function of p, typically assumed to 
increase either linearly in p or as log p. Since increasing 
overhead decreases the speed-up, this effect results in a 
smooth increase in the serial fraction f as p increases. 
Smoothly increasing f is a warning that the granularity 
of the parallel tasks is too fine. 

A third effect is the potential reduction of vector 
lengths for certain parallelizations of a particular algo- 
rithm. Vector processor performance normally in- 
creases as vector length increases except for vector 
lengths slightly larger than the length of the vector reg- 
isters. If the parallelization breaks up long vectors into 
shorter vectors, the time to execute the job can in- 
crease. This effect then also leads to a smooth increase 
in the measured serial fraction as the number of pro- 
cessors increases. However, large jobs usually have 
very long vectors, vector processors usually have only a 

few processors (the Intel IPSC-VX is an exception), and 
there are usually parallelizations that keep the vector 
lengths fixed. Thus, the reduction in vector length is 
rarely a problem and can often be avoided entirely. 

In order to see the advantage of the serial fraction 
over the other metrics, look at Table I which is ex- 
tracted from Table 2 of the Linpack report [2]. The 
Cray Y-MP shows speed-ups ranging from 1.95 to 6.96. 
Is that good? Even if you look at the efficiency, which 
ranges from 0.975 to 0.870, you still don’t know. Why 
does the efficiency fall so rapidly? Is there a lot of 
overhead when using 8 processors? The serial fraction, 
f, answers the question: the serial fraction is nearly 
constant for all values of p. The loss of efficiency is due 
to the limited parallelism of the program. 

The single data point for the Sequent Balance reveals 
that f performs better as a metric as the number of 
processors grows. The efficiency of the 30 processor 
Sequent is only 83 percent. Is that good? Yes, it is since 
the serial fraction is only 0.007. 

The data for the Alliant FX/40 shows something dif- 
ferent. Here the speed-up ranges from 1.90 to 3.22 and 
the efficiency from 0.950 to 0.805. Although neither of 
these measurements tells much, the fact that f ranges 
from 0.053 to 0.080 does; there is some overhead that is 
increasing as the number of processors grows. We can’t 
tell what this overhead is due to-synchronization cost, 
memory contention, or what-but at least we know it 
is there. The effect on the FX/80 is much smaller al- 
though there is a slight increase in f, especially for 
fewer than 5 processors. 

Even relatively subtle effects can be seen. The IBM 
3090 has a serial fraction under 0.007 for 2 and 3 pro- 
cessors, but over 0.011 for 4 or more. Here the reason is 
most likely due to the machine configuration; each set 
of 3 processors is in a single frame and shares a mem- 
ory management unit. Overhead increases slightly 
when two of these units must coordinate their activi- 
ties This effect also shows up on the 3090~280s which 
has two processors in two frames. Its run has twice the 
serial fraction as does the run on the 3090-2008. None 
of the other metrics would have revealed this effect. 

Another subtle effect shows up on the Convex. The 
4 processor C-240 shows a smaller serial fraction than 
does the 2 processor C-220. Since the same code was 
presumably run on both machines, the actual serial 
fraction must be the same. How can the measured 
value decrease? This appears to be similar to the 
“superlinear” speed-ups reported on some machines. As 
in those cases, adding processors adds cache and mem- 
ory bandwidth which reduces overhead. Perhaps that is 
the case here. 

Care must be used when comparing different ma- 
chines. For example, the serial fraction on the Cray is 3 
times larger than on the Sequent. Is the Cray really that 
inefficient? The answer is no. Since almost all the par- 
allel work can be vectorized, the Cray spends relatively 
less time in the parallel part of the code than does the 
Sequent which has no vector unit. Since the parallel- 
izable part speeds up more than the serial part which 
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Gray Y-MPI8 
Cray Y-MPI8 
Cray Y-MPI8 
Cray Y-MPI8 
Cray Y-MPI8 

Table I. Summary of Linpack report Table 2 

P Time(sec) s e f 

1 2.17 
1.11 1.95 0.975 0.024 i 
0.754 2.88 0.960 0.021 
0.577 3.76 0.940 0.021 
0.312 6.96 0.870 0.021 

IBM 3090-18OSVF 1 7.27 - - 
IBM 3090-200SVF 2 3.64 2.00 1.000 0.002 
IBM3090-280SVF 2 3.65 1.99 0.995 0.004 
IBM3090-300SVF 3 2.46 2.96 0.987 0.007 
IBM 3090-400s VF 4 1.89 3.85 0.963 0.013 
IBM3090-500SVF 5 1.52 4.78 0.956 0.011 
IBM 3090-600SVF 6 1.29 5.64 0.940 0.012 

Alliant FX/40 1 66.1 
Alliant FX/40 34.8 
Alliant FX/40 5 24.9 
Alliant FX/40 4 20.5 

Alliant FX180 1 57.7 
Alliant FX/80 2 29.8 
Alliant FX180 3 20.7 
Alliant FX180 4 16.2 
Alliant FX/80 5 13.6 
Alliant FX/80 6 11.8 
Alliant FX/80 7 10.6 
Alliant FX180 8 9.64 

Sequent 
3b 

11111 
Sequent 445 

Convex C-210 1 15 
Convex C-220 2 7.98 
Convex C-240 4 4.03 

Note: p=#processors, s=speed-up, e=efficiency, f=serial fraction 

- - 
1.90 0.950 0.053 
2.65 0.883 0.066 
3.22 0.805 0.080 

1.94 
- - 

0.970 0.032 
2.79 0.930 0.038 
3.56 0.890 0.041 
4.24 0.848 0.045 
4.89 0.815 0.046 
5.44 0.777 0.048 
5.99 0.749 0.048 

25.; 0.833 0.007 

- 
1.88 0.940 0.064 
3.72 0.930 0.025 

has less vector content, the fraction of the time spent in 
serial code is increased. 

SCALED SPEED-UP 

The Linpack benchmark report measures the perfor- 
mance of a computational kernel running on machines 
with no more than 30 processors. The results in Table II 
are taken from the work of the winners of the Gordon 
Bell Award [5]. Three applications are shown with 
maximum speed-ups of 639, 519, and 351 and efficien- 
cies ranging from 0.9965 to 0.3430. We know this is 
good work since they won the award, but how good 
a job did they do? The serial fraction ranges from 
9.00051 to 9.0019 indicating that they did a very good 
job, indeed. 

All the analysis presented so far refers to problems of 
fixed size. Gustafson [4] has argued that this is not how 
parallel processors are used. He argues that users will 
increase their problem size to keep the elapsed time of 
the run more or less constant. As the problem size 
grows, we should find the fraction of the time spent 
executing serial code decreases, leading us to predict a 
decrease in the measured serial fraction. 

If we assume that the serial time and overhead are 
independent of problem size, neither of which is fully 
justified, [3] 

The serial fraction reveals an interesting point. On all 
three problems, there is a significant reduction in the 
serial fraction in going from 4 to 16 processors (from 16 
to 64 for the wave motion problem). As with the Con- 
vex results, these numbers indicate something akin to 
“superlinear” speed-up. Perhaps the 4-processor run 
sends longer messages than does the 16-processor run, 
and these longer messages are too long for the system to 
handle efficiently. At any rate, the serial fraction has 
pointed up an inconsistency that needs further study. 

T(p, k) = T, + ze 
P' 

(6) 

where T( p, k) is the time to run the program on p 
processors for a problem needing k times more arith- 
metic. Here k is the scaling factor and k = 1 when p = 1. 
Flatt [3] points out that the scaling factor k must count 
arithmetic, not some more convenient measure such as 
memory size. 

Our definition of speed-up must now account for the 
additional arithmetic that must be done to solve our 
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Table II. Summary of Bell Award winning performance 

P s e 

Wave Motion 
4 

16 
64 

256 
1024 

4 

2 
256 

1024 

4 
16 
64 

256 
1024 

3.986 0.9965 
15.86 0.9913 
62.01 0.9689 

226.2 0.8836 
639.0 0.6240 

Fluid Dynamics 
3.959 0.9898 

15.47 0.9669 
58.53 0.9145 

201.6 0.7875 
519.1 0.5069 

Beam Stress 
3.954 0.9885 

15.46 0.9663 
57.46 0.8978 

177.5 0.6934 
351.2 0.3430 

f  

0.0012 
0.00097 
0.00051 
0.00052 
0.00059 

0.0035 
0.0023 
0.0015 
0.0011 
0.00095 

0.0039 
0.0023 
0.0018 
0.0017 
0.0019 

Note:p=#processors,s=speed-up, e=efficiency, f=serialfraction 

larger problem. We can use 

kT(1, 1) 
sk = T(p, k) 

The scaled efficiency is then L’~ = sk/ps and the scaled 
serial fraction becomes 

fA = 
l/sr - l/p 

l-1//7 
(8) 

By our previous definitions WC see that f  = kfk which 
under ideal circumstances would remain constant as 1~ 
increases. 

The scaled results are shown in Table III. Although 
these runs take constant time as the problem size 
grows, the larger problems were run with shorter time 

steps. A better scaling would be one in which the time 
integration is continued to a specific: value. 

If  the run time were still held constant. the problems 
would scale more slowly than linearly in 1’. In these 
examples. the Courant condition limits the step size 
which means that the correct scaling woulcl be k = v$. 
The scaling chosen for the problems of Table III is 
k = 17. 

As predicted 131. the efficiency decreases. barely. as 11 
increases even for scaled problems. The scaled serial 
fraction. on the other hand. decreases smoothly. This 
fact tells us that the decreasing efficiency is not caused 
by a growing serial fraction. Instead it tells us the 
problem size is not growing fast enough to completely 
counter the loss of efficiency as more processors are 
addecl. 

The variation in fk as the problem size grows makes 
it difficult to intcrprct. I f  we allow for the fact that 
ideally the increase in the problem size dots not affect 
the serial work. we again have a metric that should 
remain constant as the problem size grows. Table 111 
shows how fcfA varies with problem size. We see that 
this quantity grows slowly for the wave motion prob- 
lem, but that thcrc is virtually no increase for the fluid 
dynamics problem. These results indicate that the se- 
rial work increases for the wave motion problem as the 
problem size grows but not for the fluid dynamics prob- 
lem. The irregular behavior of kfk for the beam stress 
problem warrants further study. 

SUMMARY 
We have shown that the measured serial fraction. fs 
provides information not revealed by other commonly 
used metrics. The metric. properly defined. may also be 
useful if the problem size is allowed to increase with 
the number of processors. 

What makes the experimentally determined serial 
fraction such a good diagnostic tool of potential pcr- 

Table Ill. Bell Award scaled Droblems. k=r, 

P sk 

4 3.998 
16 15.95 
64 63.61 

256 254.1 
1024 1014 

4 3.992 
16 15.96 
64 63.82 

256 255.2 
1024 1020 

4 4.001 
16 16.00 

2;: 255.8 63.96 
1024 1023 

ek 

Wave Motion 
0.9995 
0.9969 
0.9939 
0.9926 
0.9902 

Fluid Dynamics 
0.9980 
0.9975 
0.9972 
0.9969 
0.9961 

Beam Stress 
1.000 
1.000 

0.9994 0.9992 
0.9990 

fk k fk 

0.00013 0.00053 
0.00020 0.0032 
0.000097 0.0062 
0.000029 0.0074 
0.0000098 0.010 

0.00067 0.0027 
0.00015 0.0024 
0.000046 0.0029 
0.000013 0.0033 
0.0000033 0.0034 

0.0 0.0 
0.000021 0.00034 

0.000015 0.0000038 0.00098 0.00096 
0.0000012 0.0013 

Note: p=#processors, s,=scaled speed-up, e,=scaled efficiency, f,=scaled serial fraction 
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formance proldems? While elapsecl time. speed-up. and 
efficiency vary as the number of processors increases. 
the serial fraction would remain constant in an ideal 
system. Small variations from pcrfcct behavior arc 
much easier to detect from something that should bc 
constant than from something that varies. Since !,fL for 
scaled problems shares this property. it. too. is a useful 
tool. 

Ignoring the fact that ~7 takes on only intcgcr values 
makes it easy to show that 

ri 1 
-=f 

IijJ 1’ 
(9) 

if we ignore the overheacl and assume that the serial 
fraction is independent of 17. Thus, we WC that the se- 
rial fraction is a measure of the rate of change of the 
efficiency. Even in the idcal case. l/c increases linearly 
as the number of processors increases. Any deviation if 
1 /c from linearity is a sign of lost parallelism. The frac- 
tion serial is a particularly convenient measure of this 
deviation from linearity. 

The case of problem sizes that grow as the number of 
processors is increased is only slightly more compli- 
cated. In this case 

If k = 1. i.e.. there is no scaling. equation (10) reduces to 
equation (9). I f  li = /I. then l/e has a slope of f/j]’ which 
is a very slow loss of efficiency. Other scalings lie be- 
tween thcsc two curves. 

It is easy to read too much into the numerical values. 
When the efficiency is near unity. l/s is close to l/p 

which leads to a loss of precision when subtracting in 
the numerator of equation (5). I f  care is not taken. vari- 
ations may appear that are mere round-off noise. All 
entries in the tables were computed from 

(11) 

Since both s and p arc considerably greater than 
unity and neither l/s nor l/p is near the precision of 
the floating point arithmetic. there is only one place 
where precision can bc lost. Rouncling the result to the 
significance of the reported times guarantees that the 
results are accurate. Similarly. 

(I’) 

is used for the scaled serial fraction. 
Although our numerical examples come from rather 

simple cases. one of us (Alan Karp) has suc~-~~ssfull~ 
used this metric to find a performance bug in one of his 
applications. Noting an irregularity in the behavior off 

led him to examine the way the IBM Parallel I:ortran 
prototype compiler was splitting up the work in the 
loops. Due to an oversight. the compiler truncated the 
result of dividing the number of loop iterations by the 
number of processors. This error meant that one pro- 
cessor had to do one exlra pass to finish the work in the 
loop. For some values of p this rcmainclcr was small: for 
others. it was large. The solution was to increase his 
problem size from XXI. which gives perfect load balanc- 
ing on his six-processor IBM 309(1-600s only for 2 and 
5 processors, IO 360 which always balances perfectly. 
(This cwor was reported to the IBM Parallel Portran 
compiler group.) 
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