Parallel Performance Analysis

Parallel and Distributed Computing

Department of Computer Science and Engineering (DEI) Instituto Superior Técnico

November 8, 2012

CPD (DEI / IST)

Parallel and Distributed Computing – 15

2012-11-8 1 / 36

Outline

- Performance Analysis
- Speedup and Efficiency
- Amdahl's Law
- Gustafson-Barsis' Law
- Karp-Flatt Metric
- Isoefficiency Metric

Objectives:

• predict performance of parallel programs

• understand barriers to higher performance

Speedup

Measure of how much faster is the execution of a parallel program versus a sequential one.

 $Speedup = \frac{\text{Sequential execution time}}{\text{Parallel execution time}}$

Speedup: $\psi(n, p)$

n: problem size

p: number of tasks

 $\varphi(n)$: completely parallelizable computations

 $\varphi(n)$: completely parallelizable computations

 $\kappa(n, p)$: communication / synchronization / redundant operations

 $\varphi(n)$: completely parallelizable computations

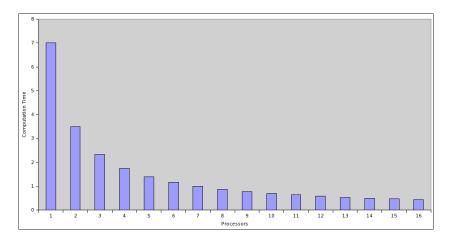
 $\kappa(n, p)$: communication / synchronization / redundant operations

$$\psi(n,p) \leq \frac{\sigma(n) + \varphi(n)}{\sigma(n) + \varphi(n)/p + \kappa(n,p)}$$

CPD (DEI / IST)

Computation Time

 $\varphi(n)/p$



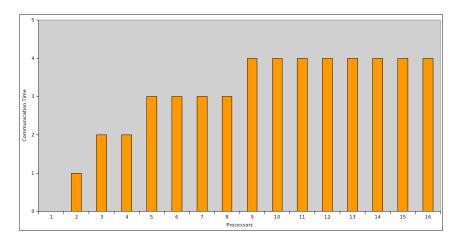
CPD (DEI / IST)

2012-11-8 6 / 36

▲ □ ► < □ ►</p>

Communication Time

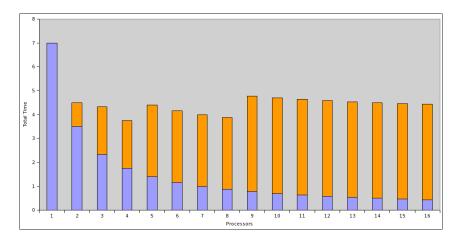
 $\kappa(n,p)$



э

・ロト ・ 日 ト ・ 田 ト ・

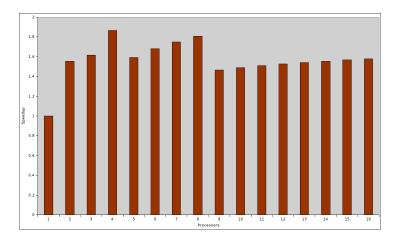
$\varphi(n)/p + \kappa(n,p)$



・ロト ・ 日 ト ・ 田 ト ・

Speedup

Speedup



CPD (DEI / IST)

2012-11-8 9 / 36

・ロト ・日下・ ・ ヨト・

Efficiency

Measure of utilization of available processors.

 $Efficiency = \frac{\text{Sequential time}}{\text{Processors used} \times \text{Parallel time}} = \frac{\text{Speedup}}{\text{Processors used}}$

Efficiency: $\varepsilon(n, p)$

$$\varepsilon(n,p) \leq \frac{\sigma(n) + \varphi(n)}{p\sigma(n) + \varphi(n) + p\kappa(n,p)}$$

$$0 \leq \varepsilon(n, p) \leq 1$$

CPD (DEI / IST)

2012-11-8 10 / 36

Speedup:

$$\psi(n,p) \leq \frac{\sigma(n) + \varphi(n)}{\sigma(n) + \varphi(n)/p + \kappa(n,p)} \leq \frac{\sigma(n) + \varphi(n)}{\sigma(n) + \varphi(n)/p}$$

 ▲ ■
 ■
 • ○ <</th>

 2012-11-8
 11 / 3

イロト イ団ト イヨト イヨト

Speedup:

$$\psi(n,p) \leq \frac{\sigma(n) + \varphi(n)}{\sigma(n) + \varphi(n)/p + \kappa(n,p)} \leq \frac{\sigma(n) + \varphi(n)}{\sigma(n) + \varphi(n)/p}$$

Let f be the fraction of sequential computation in the original sequential program:

$$f(n) = \frac{\sigma(n)}{\sigma(n) + \varphi(n)}$$

Amdahl's Law $\psi(n,p) \leq rac{1}{f(n) + rac{1-f(n)}{p}}$

CPD (DEI / IST)

2012-11-8 11 / 36

• • • • • • • • • • • • •

A computer animation program generates a feature movie frame-by-frame. Each frame can be generated independently and is output to its own file. If it takes 99 seconds to render a frame and 1 second to output it, how much speedup can be achieved by rendering the movie on 100 processors? A computer animation program generates a feature movie frame-by-frame. Each frame can be generated independently and is output to its own file. If it takes 99 seconds to render a frame and 1 second to output it, how much speedup can be achieved by rendering the movie on 100 processors?

f(n) = 0,01 p = 100

$$\psi(n,p) \leq \frac{1}{0,01 + \frac{0.99}{100}} = 50,3$$

Limitations of Amdahl's Law:

・ロト ・日下・ ・ ヨト・

Limitations of Amdahl's Law:

• only considers 2 execution modes

Limitations of Amdahl's Law:

• only considers 2 execution modes

• does not take into account parallel overhead, $\kappa(n, p)$

 \Rightarrow Overestimates achievable speedup

• typically, $\kappa(n,p)$ has lower complexity than $\varphi(n)/p$

• as *n* increases, $\varphi(n)/p$ dominates $\kappa(n,p)$

• as *n* increases, speedup increases

Amdahl's Law:

- treats problem size as a constant
- shows how execution time decreases as number of processors increases

Amdahl's Law:

- treats problem size as a constant
- shows how execution time decreases as number of processors increases

A different perspective:

- faster computers solve larger problem instances
- consider time as a constant and allow problem size to increase with number of processors

Gustafson-Barsis' Law

Speedup:

$$\psi(n,p) \leq \frac{\sigma(n) + \varphi(n)}{\sigma(n) + \varphi(n)/p + \kappa(n,p)} \leq \frac{\sigma(n) + \varphi(n)}{\sigma(n) + \varphi(n)/p}$$

▲ 重 ▶ 重 ∽ ९ <
 2012-11-8
 16 / 36

A (1) > A (2) > A

Speedup:

$$\psi(n,p) \leq \frac{\sigma(n) + \varphi(n)}{\sigma(n) + \varphi(n)/p + \kappa(n,p)} \leq \frac{\sigma(n) + \varphi(n)}{\sigma(n) + \varphi(n)/p}$$

Let s be the fraction of sequential computation in the parallel program:

$$s = rac{\sigma(n)}{\sigma(n) + rac{\varphi(n)}{p}}$$

Gustafson-Barsis' Law

$$\psi(n,p) \leq p + (1-p)s$$

CPD (DEI / IST)

2012-11-8 16 / 36

• starts from parallel execution time

• estimates sequential execution time to solve the same problem

• problem size is an increasing function of p

• predicts scaled speedup

An application running on 10 processors spends 3% of its time in serial code. What is the scaled speedup of the application?

An application running on 10 processors spends 3% of its time in serial code. What is the scaled speedup of the application?

Scaled Speedup:

$$p+(1-p)s=9,7$$

3 ×

- Amdahl's Law and Gustafson-Barsis Law ignore $\kappa(n,p)$
- overestimate speedup or scaled speedup
- Karp and Flatt proposed another metric
 - \Rightarrow experimentally determined serial fraction

- Amdahl's Law and Gustafson-Barsis Law ignore $\kappa(n,p)$
- overestimate speedup or scaled speedup
- Karp and Flatt proposed another metric
 - \Rightarrow experimentally determined serial fraction

Experimentally determined serial fraction

Represents the fraction of the original program that cannot be parallelized with respect to the sequential execution time.

$$e = rac{\sigma(n) + \kappa(n, p)}{\sigma(n) + arphi(n)}$$

The Karp-Flatt Metric

$$e = rac{\sigma(n) + \kappa(n, p)}{\sigma(n) + arphi(n)}$$

Execution time of a parallel program in p processors:

$$T(n,p) = \sigma(n) + \varphi(n)/p + \kappa(n,p)$$

$$T(n,1) = \sigma(n) + \varphi(n)$$
 $e = \frac{\sigma(n) + \kappa(n,p)}{T(n,1)}$

$$e = rac{1/\psi(n,p) - 1/p}{1 - 1/p}$$

CPD (DEI / IST)

2012-11-8 20 / 36

• takes into account parallel overhead

- allow for the analysis of the source of parallel inefficiency
 - limited opportunity for computational parallelism
 - parallel overhead (communication, synchronization, load balancing, etc)

p	2	3	4	5	6	7	8
ψ	1,8	2,5	3,1	3,6	4,0	4,4	4,7

-∢ ∃ ▶

p	2	3	4	5	6	7	8
ψ	1,8	2,5	3,1	3,6	4,0	4,4	4,7

р	2	3	4	5	6	7	8
е	0,1	0,1	0,1	0,1	0,1	0,1	0,1

Since *e* is constant, large serial fraction is the primary reason.

p	2	3	4	5	6	7	8
ψ	1,9	2,6	3,2	3,7	4,1	4,5	4,7

2012-11-8 23 / 36

< ∃ >

p	2	3	4	5	6	7	8
ψ	1,9	2,6	3,2	3,7	4,1	4,5	4,7

р	2	3	4	5	6	7	8
е	0,070	0,075	0,080	0,085	0,090	0,095	0,100

Since *e* is steadily increasing, overhead is the primary reason.

р	4	8	12
ψ	3,9	6,5	?

Is this program likely to achieve a speedup of 10 on 12 processors?

р	4	8	12
ψ	3,9	6,5	?

Is this program likely to achieve a speedup of 10 on 12 processors?

p	4	8	12
е	0,009	0,033	0,018

р	4	8	12
ψ	3,9	6,5	?

Is this program likely to achieve a speedup of 10 on 12 processors?

p	4	8	12
е	0,009	0,033	0,018

e typically increases with p. Speedup probably closer to 8 on 12 processors.

Scalability

Scalability of a parallel system measures the ability to increase performance as number of processors increases. (parallel system: parallel program executing on a parallel computer)

A scalable system maintains efficiency as processors are added.

Scalability

Scalability of a parallel system measures the ability to increase performance as number of processors increases. (parallel system: parallel program executing on a parallel computer)

A scalable system maintains efficiency as processors are added.

Isoefficiency is a way to measure scalability.

Execution time of parallel program in p processors:

$$T(n,p) = \sigma(n) + \varphi(n)/p + \kappa(n,p)$$

Let $T_0(n, p)$ be the time spent doing work not done by the sequential algorithm:

$$T_0(n,p) = (p-1)\sigma(n) + p\kappa(n,p)$$

Execution time of parallel program in p processors:

$$T(n,p) = \sigma(n) + \varphi(n)/p + \kappa(n,p)$$

Let $T_0(n, p)$ be the time spent doing work not done by the sequential algorithm:

$$T_0(n,p) = (p-1)\sigma(n) + p\kappa(n,p)$$

$$\psi(n,p) \leq \frac{\sigma(n) + \varphi(n)}{\sigma(n) + \varphi(n)/p + \kappa(n,p)}$$

Execution time of parallel program in p processors:

$$T(n,p) = \sigma(n) + \varphi(n)/p + \kappa(n,p)$$

Let $T_0(n, p)$ be the time spent doing work not done by the sequential algorithm:

$$T_0(n,p) = (p-1)\sigma(n) + p\kappa(n,p)$$

$$\begin{split} \psi(n,p) &\leq \frac{\sigma(n) + \varphi(n)}{\sigma(n) + \varphi(n)/p + \kappa(n,p)} \\ &= \frac{p(\sigma(n) + \varphi(n))}{\sigma(n) + \varphi(n) + (p-1)\sigma(n) + p\kappa(n,p)} \end{split}$$

< ∃ ►

Execution time of parallel program in p processors:

$$T(n,p) = \sigma(n) + \varphi(n)/p + \kappa(n,p)$$

Let $T_0(n, p)$ be the time spent doing work not done by the sequential algorithm:

$$T_0(n,p) = (p-1)\sigma(n) + p\kappa(n,p)$$

$$\psi(n,p) \leq \frac{\sigma(n) + \varphi(n)}{\sigma(n) + \varphi(n)/p + \kappa(n,p)}$$

=
$$\frac{p(\sigma(n) + \varphi(n))}{\sigma(n) + \varphi(n) + (p-1)\sigma(n) + p\kappa(n,p)}$$

=
$$\frac{p(\sigma(n) + \varphi(n))}{\sigma(n) + \varphi(n) + T_0(n,p)}$$

CPD (DEI / IST)

2012-11-8 26 / 36

$$\varepsilon(n,p) = \frac{\psi(n,p)}{p}$$

▲ 문 ▶ 문 • ○
 2012-11-8 27 / 3

・ロト ・ 日 ト ・ 日 ト ・

$$arepsilon(n,p) = rac{\psi(n,p)}{p} \ \leq rac{1}{1+rac{T_0(n,p)}{\sigma(n)+arphi(n)}}$$

æ 2012-11-8 27 / 36

э

・ロト ・ 日 ト ・ 日 ト ・

$$\begin{split} \varepsilon(n,p) &= \frac{\psi(n,p)}{p} \\ &\leq \frac{1}{1+\frac{T_0(n,p)}{\sigma(n)+\varphi(n)}} \\ &= \frac{1}{1+T_0(n,p)/T(n,1)} \end{split}$$

< ≣ ► ≣ ৩৭৫ 2012-11-8 27 / 36

$$\begin{split} \varepsilon(n,p) &= \frac{\psi(n,p)}{p} \\ &\leq \frac{1}{1+\frac{T_0(n,p)}{\sigma(n)+\varphi(n)}} \\ &= \frac{1}{1+T_0(n,p)/T(n,1)} \\ \Rightarrow T(n,1) &\geq \frac{\varepsilon(n,p)}{1-\varepsilon(n,p)}T_0(n,p) \end{split}$$

æ 2012-11-8

э

・ロト ・日下・ ・ ヨト・

$$\begin{split} \varepsilon(n,p) &= \frac{\psi(n,p)}{p} \\ &\leq \frac{1}{1+\frac{T_0(n,p)}{\sigma(n)+\varphi(n)}} \\ &= \frac{1}{1+T_0(n,p)/T(n,1)} \\ \Rightarrow T(n,1) &\geq \frac{\varepsilon(n,p)}{1-\varepsilon(n,p)}T_0(n,p) \end{split}$$

In order to maintain efficiency: constant $\frac{\varepsilon(n,p)}{1-\varepsilon(n,p)}=C$

- ∢ ∃ ▶

$$\begin{split} \varepsilon(n,p) &= \frac{\psi(n,p)}{p} \\ &\leq \frac{1}{1+\frac{T_0(n,p)}{\sigma(n)+\varphi(n)}} \\ &= \frac{1}{1+T_0(n,p)/T(n,1)} \\ \Rightarrow T(n,1) &\geq \frac{\varepsilon(n,p)}{1-\varepsilon(n,p)}T_0(n,p) \end{split}$$

In order to maintain efficiency: constant $\frac{\varepsilon(n,p)}{1-\varepsilon(n,p)}=C$

Isoefficiency Relation

To maintain the same level of efficiency as the number of processors p increases, n must be increased such that we satisfy:

$$T(n,1) \geq CT_0(n,p)$$

.∃ >

Let M(n) denote memory required for problem of size n.

Let M(n) denote memory required for problem of size n.

M(f(p))/p indicates how memory usage per processor must increase to maintain same efficiency.

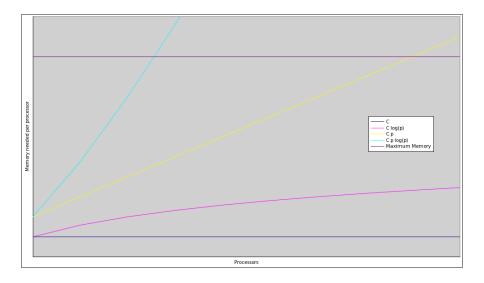
Let M(n) denote memory required for problem of size n.

M(f(p))/p indicates how memory usage per processor must increase to maintain same efficiency.

M(f(p))/p is called the scalability function.

- to maintain efficiency when increasing p, we must increase n
- maximum problem size limited by available memory, which is linear in p
- scalability function shows how memory usage per processor must grow to maintain efficiency
- scalability function a constant means parallel system is perfectly scalable

Interpreting the Scalability Function



CPD (DEI / IST)

2012-11-8 30 / 36

-∢ ∃ ▶

Sequential algorithm complexity:

< ∃ >

Sequential algorithm complexity: $T(n, 1) = \Theta(n)$

Parallel algorithm: Computational complexity:

< ∃ >

Sequential algorithm complexity: $T(n, 1) = \Theta(n)$

Parallel algorithm: Computational complexity: $\Theta(n/p)$ Communication complexity:

< ∃ ►

Sequential algorithm complexity: $T(n, 1) = \Theta(n)$

Parallel algorithm: Computational complexity: $\Theta(n/p)$ Communication complexity: $\Theta(\log p)$

Parallel overhead: $T_0(n, p) = \Theta(p \log p)$

Isoefficiency relation: $n \ge Cp \log p$

To maintain same level of efficiency, how must n increase when p increases?

Isoefficiency relation: $n \ge Cp \log p$

To maintain same level of efficiency, how must n increase when p increases?

M(n) = n

Scalability function:

 $M(Cp\log p)/p = C\log p$

The system has good scalability!

CPD (DEI / IST)

2012-11-8 32 / 36

Sequential algorithm complexity:

< 3 >

Sequential algorithm complexity: $T(n, 1) = \Theta(n^3)$

Parallel algorithm: Computational complexity:

< ∃ >

Sequential algorithm complexity: $T(n, 1) = \Theta(n^3)$

Parallel algorithm: Computational complexity: $\Theta(n^3/p)$ Communication complexity: Sequential algorithm complexity: $T(n, 1) = \Theta(n^3)$

Parallel algorithm: Computational complexity: $\Theta(n^3/p)$ Communication complexity: $\Theta(n^2 \log p)$

Parallel overhead: $T_0(n, p) = \Theta(pn^2 \log p)$

Example 2: Floyd-Warshall Algorithm

Isoefficiency relation: $n^3 \ge Cpn^2 \log p \Rightarrow n \ge Cp \log p$

To maintain same level of efficiency, how must n increase when p increases?

Example 2: Floyd-Warshall Algorithm

Isoefficiency relation: $n^3 \ge Cpn^2 \log p \Rightarrow n \ge Cp \log p$

To maintain same level of efficiency, how must n increase when p increases?

 $M(n) = n^2$

Scalability function:

 $M(Cp\log p)/p = C^2p\log^2 p$

The system has poor scalability!

CPD (DEI / IST)

2012-11-8 34 / 36

Review

- Performance Analysis
- Speedup and Efficiency
- Amdahl's Law
- Gustafson-Barsis' Law
- Karp-Flatt Metric
- Isoefficiency Metric

• Matrix-vector multiplication

< 🗗 🕨

- 4 ∃ ≻ 4