
Parallel Performance Analysis

Parallel and Distributed Computing

Department of Computer Science and Engineering (DEI)
Instituto Superior Técnico
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Performance Analysis

Objectives:

predict performance of parallel programs

understand barriers to higher performance
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Speedup

Speedup

Measure of how much faster is the execution of a parallel program versus a
sequential one.

Speedup =
Sequential execution time

Parallel execution time

Speedup: ψ(n, p)

n: problem size

p: number of tasks
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Execution Time Components

σ(n): inherently sequential computations

ϕ(n): completely parallelizable computations

κ(n, p): communication / synchronization / redundant operations

ψ(n, p) ≤ σ(n) + ϕ(n)

σ(n) + ϕ(n)/p + κ(n, p)
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Computation Time

ϕ(n)/p
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Communication Time

κ(n, p)
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Total Time

ϕ(n)/p + κ(n, p)
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Speedup

Speedup
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Efficiency

Efficiency

Measure of utilization of available processors.

Efficiency =
Sequential time

Processors used× Parallel time
=

Speedup

Processors used

Efficiency: ε(n, p)

ε(n, p) ≤ σ(n) + ϕ(n)

pσ(n) + ϕ(n) + pκ(n, p)

0 ≤ ε(n, p) ≤ 1
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Amdahl’s Law

Speedup:

ψ(n, p) ≤ σ(n) + ϕ(n)

σ(n) + ϕ(n)/p + κ(n, p)
≤ σ(n) + ϕ(n)

σ(n) + ϕ(n)/p

Let f be the fraction of sequential computation in the original sequential
program:

f (n) =
σ(n)

σ(n) + ϕ(n)

Amdahl’s Law

ψ(n, p) ≤ 1

f (n) + 1−f (n)
p
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Problem

A computer animation program generates a feature movie frame-by-frame.
Each frame can be generated independently and is output to its own file.
If it takes 99 seconds to render a frame and 1 second to output it, how
much speedup can be achieved by rendering the movie on 100 processors?

f (n) = 0, 01 p = 100

ψ(n, p) ≤ 1

0, 01 + 0,99
100

= 50, 3
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Amdahl’s Law

Limitations of Amdahl’s Law:

only considers 2 execution modes

does not take into account parallel overhead, κ(n, p)

⇒ Overestimates achievable speedup
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Amdahl Effect

typically, κ(n, p) has lower complexity than ϕ(n)/p

as n increases, ϕ(n)/p dominates κ(n, p)

as n increases, speedup increases
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Alternative Optimization Measure

Amdahl’s Law:

treats problem size as a constant

shows how execution time decreases as number of processors increases

A different perspective:

faster computers solve larger problem instances

consider time as a constant and allow problem size to increase with
number of processors
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Gustafson-Barsis’ Law

Speedup:

ψ(n, p) ≤ σ(n) + ϕ(n)

σ(n) + ϕ(n)/p + κ(n, p)
≤ σ(n) + ϕ(n)

σ(n) + ϕ(n)/p

Let s be the fraction of sequential computation in the parallel program:

s =
σ(n)

σ(n) + ϕ(n)
p

Gustafson-Barsis’ Law

ψ(n, p) ≤ p + (1− p)s
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Gustafson-Barsis’ Law

starts from parallel execution time

estimates sequential execution time to solve the same problem

problem size is an increasing function of p

predicts scaled speedup
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Example

An application running on 10 processors spends 3% of its time in serial
code. What is the scaled speedup of the application?

Scaled Speedup:
p + (1− p)s = 9, 7
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The Karp-Flatt Metric

Amdahl’s Law and Gustafson-Barsis Law ignore κ(n, p)

overestimate speedup or scaled speedup

Karp and Flatt proposed another metric
⇒ experimentally determined serial fraction

Experimentally determined serial fraction

Represents the fraction of the original program that cannot be parallelized
with respect to the sequential execution time.

e =
σ(n) + κ(n, p)

σ(n) + ϕ(n)
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The Karp-Flatt Metric

e =
σ(n) + κ(n, p)

σ(n) + ϕ(n)

Execution time of a parallel program in p processors:

T (n, p) = σ(n) + ϕ(n)/p + κ(n, p)

T (n, 1) = σ(n) + ϕ(n) e =
σ(n) + κ(n, p)

T (n, 1)

e =
1/ψ(n, p)− 1/p

1− 1/p
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The Karp-Flatt Metric

takes into account parallel overhead

allow for the analysis of the source of parallel inefficiency

limited opportunity for computational parallelism

parallel overhead (communication, synchronization, load balancing, etc)
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Example 1

p 2 3 4 5 6 7 8

ψ 1,8 2,5 3,1 3,6 4,0 4,4 4,7

What is the primary reason for speedup of only 4,7 on 8 CPUs?

p 2 3 4 5 6 7 8

e 0,1 0,1 0,1 0,1 0,1 0,1 0,1

Since e is constant, large serial fraction is the primary reason.
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Example 2

p 2 3 4 5 6 7 8

ψ 1,9 2,6 3,2 3,7 4,1 4,5 4,7

What is the primary reason for speedup of only 4,7 on 8 CPUs?

p 2 3 4 5 6 7 8

e 0,070 0,075 0,080 0,085 0,090 0,095 0,100

Since e is steadily increasing, overhead is the primary reason.
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Problem

p 4 8 12

ψ 3,9 6,5 ?

Is this program likely to achieve a speedup of 10 on 12 processors?

p 4 8 12

e 0,009 0,033 0,018

e typically increases with p. Speedup probably closer to 8 on 12 processors.
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Isoefficiency Metric

Scalability

Scalability of a parallel system measures the ability to increase
performance as number of processors increases.
(parallel system: parallel program executing on a parallel computer)

A scalable system maintains efficiency as processors are added.

Isoefficiency is a way to measure scalability.
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Isoefficiency Metric

Execution time of parallel program in p processors:

T (n, p) = σ(n) + ϕ(n)/p + κ(n, p)

Let T0(n, p) be the time spent doing work not done by the sequential
algorithm:

T0(n, p) = (p − 1)σ(n) + pκ(n, p)

ψ(n, p) ≤ σ(n) + ϕ(n)

σ(n) + ϕ(n)/p + κ(n, p)

=
p(σ(n) + ϕ(n))

σ(n) + ϕ(n) + (p − 1)σ(n) + pκ(n, p)

=
p(σ(n) + ϕ(n))

σ(n) + ϕ(n) + T0(n, p)
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Isoefficiency Metric

ε(n, p) =
ψ(n, p)

p

≤ 1

1 + T0(n,p)
σ(n)+ϕ(n)

=
1

1 + T0(n, p)/T (n, 1)

⇒ T (n, 1) ≥ ε(n, p)

1− ε(n, p)
T0(n, p)

In order to maintain efficiency: constant ε(n,p)
1−ε(n,p) = C

Isoefficiency Relation

To maintain the same level of efficiency as the number of processors p
increases, n must be increased such that we satisfy:

T (n, 1) ≥ CT0(n, p)
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Scalability Function

Suppose isoefficiency relation is n ≥ f (p).

Let M(n) denote memory required for problem of size n.

M(f (p))/p indicates how memory usage per processor must increase to
maintain same efficiency.

M(f (p))/p is called the scalability function.

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 28 / 36



Scalability Function

Suppose isoefficiency relation is n ≥ f (p).

Let M(n) denote memory required for problem of size n.

M(f (p))/p indicates how memory usage per processor must increase to
maintain same efficiency.

M(f (p))/p is called the scalability function.

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 28 / 36



Scalability Function

Suppose isoefficiency relation is n ≥ f (p).

Let M(n) denote memory required for problem of size n.

M(f (p))/p indicates how memory usage per processor must increase to
maintain same efficiency.

M(f (p))/p is called the scalability function.

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 28 / 36



Scalability Function

Suppose isoefficiency relation is n ≥ f (p).

Let M(n) denote memory required for problem of size n.

M(f (p))/p indicates how memory usage per processor must increase to
maintain same efficiency.

M(f (p))/p is called the scalability function.

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 28 / 36



Meaning of Scalability Function

to maintain efficiency when increasing p, we must increase n

maximum problem size limited by available memory, which is linear in
p

scalability function shows how memory usage per processor must grow
to maintain efficiency

scalability function a constant means parallel system is perfectly
scalable
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Interpreting the Scalability Function
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Example 1: Reduction

Sequential algorithm complexity:

T (n, 1) = Θ(n)

Parallel algorithm:

Computational complexity: Θ(n/p)
Communication complexity: Θ(log p)

Parallel overhead: T0(n, p) = Θ(p log p)
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Example 1: Reduction

Isoefficiency relation: n ≥ Cp log p

To maintain same level of efficiency, how must n increase when p
increases?

M(n) = n

Scalability function:

M(Cp log p)/p = C log p

The system has good scalability!
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Example 2: Floyd-Warshall Algorithm

Sequential algorithm complexity:

T (n, 1) = Θ(n3)

Parallel algorithm:

Computational complexity: Θ(n3/p)
Communication complexity: Θ(n2 log p)

Parallel overhead: T0(n, p) = Θ(pn2 log p)
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Parallel overhead: T0(n, p) = Θ(pn2 log p)

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 33 / 36



Example 2: Floyd-Warshall Algorithm

Isoefficiency relation: n3 ≥ Cpn2 log p ⇒ n ≥ Cp log p

To maintain same level of efficiency, how must n increase when p
increases?

M(n) = n2

Scalability function:

M(Cp log p)/p = C 2p log2 p

The system has poor scalability!
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Review

Performance Analysis

Speedup and Efficiency

Amdahl’s Law

Gustafson-Barsis’ Law

Karp-Flatt Metric

Isoefficiency Metric

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 35 / 36



Next Class

Matrix-vector multiplication
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