
Parallel Performance Analysis

Parallel and Distributed Computing

Department of Computer Science and Engineering (DEI)
Instituto Superior Técnico

November 8, 2012

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 1 / 36



Outline

Performance Analysis

Speedup and Efficiency

Amdahl’s Law

Gustafson-Barsis’ Law

Karp-Flatt Metric

Isoefficiency Metric

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 2 / 36



Performance Analysis

Objectives:

predict performance of parallel programs

understand barriers to higher performance

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 3 / 36



Speedup

Speedup

Measure of how much faster is the execution of a parallel program versus a
sequential one.

Speedup =
Sequential execution time

Parallel execution time

Speedup: ψ(n, p)

n: problem size

p: number of tasks

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 4 / 36



Execution Time Components

σ(n): inherently sequential computations

ϕ(n): completely parallelizable computations

κ(n, p): communication / synchronization / redundant operations

ψ(n, p) ≤ σ(n) + ϕ(n)

σ(n) + ϕ(n)/p + κ(n, p)

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 5 / 36



Execution Time Components

σ(n): inherently sequential computations

ϕ(n): completely parallelizable computations

κ(n, p): communication / synchronization / redundant operations

ψ(n, p) ≤ σ(n) + ϕ(n)

σ(n) + ϕ(n)/p + κ(n, p)

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 5 / 36



Execution Time Components

σ(n): inherently sequential computations

ϕ(n): completely parallelizable computations

κ(n, p): communication / synchronization / redundant operations

ψ(n, p) ≤ σ(n) + ϕ(n)

σ(n) + ϕ(n)/p + κ(n, p)

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 5 / 36



Execution Time Components

σ(n): inherently sequential computations

ϕ(n): completely parallelizable computations

κ(n, p): communication / synchronization / redundant operations

ψ(n, p) ≤ σ(n) + ϕ(n)

σ(n) + ϕ(n)/p + κ(n, p)

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 5 / 36



Computation Time

ϕ(n)/p

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 6 / 36



Communication Time

κ(n, p)

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 7 / 36



Total Time

ϕ(n)/p + κ(n, p)

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 8 / 36



Speedup

Speedup

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 9 / 36



Efficiency

Efficiency

Measure of utilization of available processors.

Efficiency =
Sequential time

Processors used× Parallel time
=

Speedup

Processors used

Efficiency: ε(n, p)

ε(n, p) ≤ σ(n) + ϕ(n)

pσ(n) + ϕ(n) + pκ(n, p)

0 ≤ ε(n, p) ≤ 1

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 10 / 36



Amdahl’s Law

Speedup:

ψ(n, p) ≤ σ(n) + ϕ(n)

σ(n) + ϕ(n)/p + κ(n, p)
≤ σ(n) + ϕ(n)

σ(n) + ϕ(n)/p

Let f be the fraction of sequential computation in the original sequential
program:

f (n) =
σ(n)

σ(n) + ϕ(n)

Amdahl’s Law

ψ(n, p) ≤ 1

f (n) + 1−f (n)
p

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 11 / 36



Amdahl’s Law

Speedup:

ψ(n, p) ≤ σ(n) + ϕ(n)

σ(n) + ϕ(n)/p + κ(n, p)
≤ σ(n) + ϕ(n)

σ(n) + ϕ(n)/p

Let f be the fraction of sequential computation in the original sequential
program:

f (n) =
σ(n)

σ(n) + ϕ(n)

Amdahl’s Law

ψ(n, p) ≤ 1

f (n) + 1−f (n)
p

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 11 / 36



Problem

A computer animation program generates a feature movie frame-by-frame.
Each frame can be generated independently and is output to its own file.
If it takes 99 seconds to render a frame and 1 second to output it, how
much speedup can be achieved by rendering the movie on 100 processors?

f (n) = 0, 01 p = 100

ψ(n, p) ≤ 1

0, 01 + 0,99
100

= 50, 3

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 12 / 36



Problem

A computer animation program generates a feature movie frame-by-frame.
Each frame can be generated independently and is output to its own file.
If it takes 99 seconds to render a frame and 1 second to output it, how
much speedup can be achieved by rendering the movie on 100 processors?

f (n) = 0, 01 p = 100

ψ(n, p) ≤ 1

0, 01 + 0,99
100

= 50, 3

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 12 / 36



Amdahl’s Law

Limitations of Amdahl’s Law:

only considers 2 execution modes

does not take into account parallel overhead, κ(n, p)

⇒ Overestimates achievable speedup

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 13 / 36



Amdahl’s Law

Limitations of Amdahl’s Law:

only considers 2 execution modes

does not take into account parallel overhead, κ(n, p)

⇒ Overestimates achievable speedup

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 13 / 36



Amdahl’s Law

Limitations of Amdahl’s Law:

only considers 2 execution modes

does not take into account parallel overhead, κ(n, p)

⇒ Overestimates achievable speedup

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 13 / 36



Amdahl Effect

typically, κ(n, p) has lower complexity than ϕ(n)/p

as n increases, ϕ(n)/p dominates κ(n, p)

as n increases, speedup increases

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 14 / 36



Alternative Optimization Measure

Amdahl’s Law:

treats problem size as a constant

shows how execution time decreases as number of processors increases

A different perspective:

faster computers solve larger problem instances

consider time as a constant and allow problem size to increase with
number of processors

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 15 / 36



Alternative Optimization Measure

Amdahl’s Law:

treats problem size as a constant

shows how execution time decreases as number of processors increases

A different perspective:

faster computers solve larger problem instances

consider time as a constant and allow problem size to increase with
number of processors

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 15 / 36



Gustafson-Barsis’ Law

Speedup:

ψ(n, p) ≤ σ(n) + ϕ(n)

σ(n) + ϕ(n)/p + κ(n, p)
≤ σ(n) + ϕ(n)

σ(n) + ϕ(n)/p

Let s be the fraction of sequential computation in the parallel program:

s =
σ(n)

σ(n) + ϕ(n)
p

Gustafson-Barsis’ Law

ψ(n, p) ≤ p + (1− p)s

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 16 / 36



Gustafson-Barsis’ Law

Speedup:

ψ(n, p) ≤ σ(n) + ϕ(n)

σ(n) + ϕ(n)/p + κ(n, p)
≤ σ(n) + ϕ(n)

σ(n) + ϕ(n)/p

Let s be the fraction of sequential computation in the parallel program:

s =
σ(n)

σ(n) + ϕ(n)
p

Gustafson-Barsis’ Law

ψ(n, p) ≤ p + (1− p)s

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 16 / 36



Gustafson-Barsis’ Law

starts from parallel execution time

estimates sequential execution time to solve the same problem

problem size is an increasing function of p

predicts scaled speedup

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 17 / 36



Example

An application running on 10 processors spends 3% of its time in serial
code. What is the scaled speedup of the application?

Scaled Speedup:
p + (1− p)s = 9, 7

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 18 / 36



Example

An application running on 10 processors spends 3% of its time in serial
code. What is the scaled speedup of the application?

Scaled Speedup:
p + (1− p)s = 9, 7

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 18 / 36



The Karp-Flatt Metric

Amdahl’s Law and Gustafson-Barsis Law ignore κ(n, p)

overestimate speedup or scaled speedup

Karp and Flatt proposed another metric
⇒ experimentally determined serial fraction

Experimentally determined serial fraction

Represents the fraction of the original program that cannot be parallelized
with respect to the sequential execution time.

e =
σ(n) + κ(n, p)

σ(n) + ϕ(n)

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 19 / 36



The Karp-Flatt Metric

Amdahl’s Law and Gustafson-Barsis Law ignore κ(n, p)

overestimate speedup or scaled speedup

Karp and Flatt proposed another metric
⇒ experimentally determined serial fraction

Experimentally determined serial fraction

Represents the fraction of the original program that cannot be parallelized
with respect to the sequential execution time.

e =
σ(n) + κ(n, p)

σ(n) + ϕ(n)

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 19 / 36



The Karp-Flatt Metric

e =
σ(n) + κ(n, p)

σ(n) + ϕ(n)

Execution time of a parallel program in p processors:

T (n, p) = σ(n) + ϕ(n)/p + κ(n, p)

T (n, 1) = σ(n) + ϕ(n) e =
σ(n) + κ(n, p)

T (n, 1)

e =
1/ψ(n, p)− 1/p

1− 1/p

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 20 / 36



The Karp-Flatt Metric

takes into account parallel overhead

allow for the analysis of the source of parallel inefficiency

limited opportunity for computational parallelism

parallel overhead (communication, synchronization, load balancing, etc)

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 21 / 36



Example 1

p 2 3 4 5 6 7 8

ψ 1,8 2,5 3,1 3,6 4,0 4,4 4,7

What is the primary reason for speedup of only 4,7 on 8 CPUs?

p 2 3 4 5 6 7 8

e 0,1 0,1 0,1 0,1 0,1 0,1 0,1

Since e is constant, large serial fraction is the primary reason.

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 22 / 36



Example 1

p 2 3 4 5 6 7 8

ψ 1,8 2,5 3,1 3,6 4,0 4,4 4,7

What is the primary reason for speedup of only 4,7 on 8 CPUs?

p 2 3 4 5 6 7 8

e 0,1 0,1 0,1 0,1 0,1 0,1 0,1

Since e is constant, large serial fraction is the primary reason.

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 22 / 36



Example 2

p 2 3 4 5 6 7 8

ψ 1,9 2,6 3,2 3,7 4,1 4,5 4,7

What is the primary reason for speedup of only 4,7 on 8 CPUs?

p 2 3 4 5 6 7 8

e 0,070 0,075 0,080 0,085 0,090 0,095 0,100

Since e is steadily increasing, overhead is the primary reason.

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 23 / 36



Example 2

p 2 3 4 5 6 7 8

ψ 1,9 2,6 3,2 3,7 4,1 4,5 4,7

What is the primary reason for speedup of only 4,7 on 8 CPUs?

p 2 3 4 5 6 7 8

e 0,070 0,075 0,080 0,085 0,090 0,095 0,100

Since e is steadily increasing, overhead is the primary reason.

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 23 / 36



Problem

p 4 8 12

ψ 3,9 6,5 ?

Is this program likely to achieve a speedup of 10 on 12 processors?

p 4 8 12

e 0,009 0,033 0,018

e typically increases with p. Speedup probably closer to 8 on 12 processors.

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 24 / 36



Problem

p 4 8 12

ψ 3,9 6,5 ?

Is this program likely to achieve a speedup of 10 on 12 processors?

p 4 8 12

e 0,009 0,033 0,018

e typically increases with p. Speedup probably closer to 8 on 12 processors.

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 24 / 36



Problem

p 4 8 12

ψ 3,9 6,5 ?

Is this program likely to achieve a speedup of 10 on 12 processors?

p 4 8 12

e 0,009 0,033 0,018

e typically increases with p. Speedup probably closer to 8 on 12 processors.

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 24 / 36



Isoefficiency Metric

Scalability

Scalability of a parallel system measures the ability to increase
performance as number of processors increases.
(parallel system: parallel program executing on a parallel computer)

A scalable system maintains efficiency as processors are added.

Isoefficiency is a way to measure scalability.

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 25 / 36



Isoefficiency Metric

Scalability

Scalability of a parallel system measures the ability to increase
performance as number of processors increases.
(parallel system: parallel program executing on a parallel computer)

A scalable system maintains efficiency as processors are added.

Isoefficiency is a way to measure scalability.

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 25 / 36



Isoefficiency Metric

Execution time of parallel program in p processors:

T (n, p) = σ(n) + ϕ(n)/p + κ(n, p)

Let T0(n, p) be the time spent doing work not done by the sequential
algorithm:

T0(n, p) = (p − 1)σ(n) + pκ(n, p)

ψ(n, p) ≤ σ(n) + ϕ(n)

σ(n) + ϕ(n)/p + κ(n, p)

=
p(σ(n) + ϕ(n))

σ(n) + ϕ(n) + (p − 1)σ(n) + pκ(n, p)

=
p(σ(n) + ϕ(n))

σ(n) + ϕ(n) + T0(n, p)

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 26 / 36



Isoefficiency Metric

Execution time of parallel program in p processors:

T (n, p) = σ(n) + ϕ(n)/p + κ(n, p)

Let T0(n, p) be the time spent doing work not done by the sequential
algorithm:

T0(n, p) = (p − 1)σ(n) + pκ(n, p)

ψ(n, p) ≤ σ(n) + ϕ(n)

σ(n) + ϕ(n)/p + κ(n, p)

=
p(σ(n) + ϕ(n))

σ(n) + ϕ(n) + (p − 1)σ(n) + pκ(n, p)

=
p(σ(n) + ϕ(n))

σ(n) + ϕ(n) + T0(n, p)

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 26 / 36



Isoefficiency Metric

Execution time of parallel program in p processors:

T (n, p) = σ(n) + ϕ(n)/p + κ(n, p)

Let T0(n, p) be the time spent doing work not done by the sequential
algorithm:

T0(n, p) = (p − 1)σ(n) + pκ(n, p)

ψ(n, p) ≤ σ(n) + ϕ(n)

σ(n) + ϕ(n)/p + κ(n, p)

=
p(σ(n) + ϕ(n))

σ(n) + ϕ(n) + (p − 1)σ(n) + pκ(n, p)

=
p(σ(n) + ϕ(n))

σ(n) + ϕ(n) + T0(n, p)

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 26 / 36



Isoefficiency Metric

Execution time of parallel program in p processors:

T (n, p) = σ(n) + ϕ(n)/p + κ(n, p)

Let T0(n, p) be the time spent doing work not done by the sequential
algorithm:

T0(n, p) = (p − 1)σ(n) + pκ(n, p)

ψ(n, p) ≤ σ(n) + ϕ(n)

σ(n) + ϕ(n)/p + κ(n, p)

=
p(σ(n) + ϕ(n))

σ(n) + ϕ(n) + (p − 1)σ(n) + pκ(n, p)

=
p(σ(n) + ϕ(n))

σ(n) + ϕ(n) + T0(n, p)

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 26 / 36



Isoefficiency Metric

ε(n, p) =
ψ(n, p)

p

≤ 1

1 + T0(n,p)
σ(n)+ϕ(n)

=
1

1 + T0(n, p)/T (n, 1)

⇒ T (n, 1) ≥ ε(n, p)

1− ε(n, p)
T0(n, p)

In order to maintain efficiency: constant ε(n,p)
1−ε(n,p) = C

Isoefficiency Relation

To maintain the same level of efficiency as the number of processors p
increases, n must be increased such that we satisfy:

T (n, 1) ≥ CT0(n, p)

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 27 / 36



Isoefficiency Metric

ε(n, p) =
ψ(n, p)

p

≤ 1

1 + T0(n,p)
σ(n)+ϕ(n)

=
1

1 + T0(n, p)/T (n, 1)

⇒ T (n, 1) ≥ ε(n, p)

1− ε(n, p)
T0(n, p)

In order to maintain efficiency: constant ε(n,p)
1−ε(n,p) = C

Isoefficiency Relation

To maintain the same level of efficiency as the number of processors p
increases, n must be increased such that we satisfy:

T (n, 1) ≥ CT0(n, p)

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 27 / 36



Isoefficiency Metric

ε(n, p) =
ψ(n, p)

p

≤ 1

1 + T0(n,p)
σ(n)+ϕ(n)

=
1

1 + T0(n, p)/T (n, 1)

⇒ T (n, 1) ≥ ε(n, p)

1− ε(n, p)
T0(n, p)

In order to maintain efficiency: constant ε(n,p)
1−ε(n,p) = C

Isoefficiency Relation

To maintain the same level of efficiency as the number of processors p
increases, n must be increased such that we satisfy:

T (n, 1) ≥ CT0(n, p)

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 27 / 36



Isoefficiency Metric

ε(n, p) =
ψ(n, p)

p

≤ 1

1 + T0(n,p)
σ(n)+ϕ(n)

=
1

1 + T0(n, p)/T (n, 1)

⇒ T (n, 1) ≥ ε(n, p)

1− ε(n, p)
T0(n, p)

In order to maintain efficiency: constant ε(n,p)
1−ε(n,p) = C

Isoefficiency Relation

To maintain the same level of efficiency as the number of processors p
increases, n must be increased such that we satisfy:

T (n, 1) ≥ CT0(n, p)

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 27 / 36



Isoefficiency Metric

ε(n, p) =
ψ(n, p)

p

≤ 1

1 + T0(n,p)
σ(n)+ϕ(n)

=
1

1 + T0(n, p)/T (n, 1)

⇒ T (n, 1) ≥ ε(n, p)

1− ε(n, p)
T0(n, p)

In order to maintain efficiency: constant ε(n,p)
1−ε(n,p) = C

Isoefficiency Relation

To maintain the same level of efficiency as the number of processors p
increases, n must be increased such that we satisfy:

T (n, 1) ≥ CT0(n, p)

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 27 / 36



Isoefficiency Metric

ε(n, p) =
ψ(n, p)

p

≤ 1

1 + T0(n,p)
σ(n)+ϕ(n)

=
1

1 + T0(n, p)/T (n, 1)

⇒ T (n, 1) ≥ ε(n, p)

1− ε(n, p)
T0(n, p)

In order to maintain efficiency: constant ε(n,p)
1−ε(n,p) = C

Isoefficiency Relation

To maintain the same level of efficiency as the number of processors p
increases, n must be increased such that we satisfy:

T (n, 1) ≥ CT0(n, p)

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 27 / 36



Scalability Function

Suppose isoefficiency relation is n ≥ f (p).

Let M(n) denote memory required for problem of size n.

M(f (p))/p indicates how memory usage per processor must increase to
maintain same efficiency.

M(f (p))/p is called the scalability function.

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 28 / 36



Scalability Function

Suppose isoefficiency relation is n ≥ f (p).

Let M(n) denote memory required for problem of size n.

M(f (p))/p indicates how memory usage per processor must increase to
maintain same efficiency.

M(f (p))/p is called the scalability function.

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 28 / 36



Scalability Function

Suppose isoefficiency relation is n ≥ f (p).

Let M(n) denote memory required for problem of size n.

M(f (p))/p indicates how memory usage per processor must increase to
maintain same efficiency.

M(f (p))/p is called the scalability function.

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 28 / 36



Scalability Function

Suppose isoefficiency relation is n ≥ f (p).

Let M(n) denote memory required for problem of size n.

M(f (p))/p indicates how memory usage per processor must increase to
maintain same efficiency.

M(f (p))/p is called the scalability function.

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 28 / 36



Meaning of Scalability Function

to maintain efficiency when increasing p, we must increase n

maximum problem size limited by available memory, which is linear in
p

scalability function shows how memory usage per processor must grow
to maintain efficiency

scalability function a constant means parallel system is perfectly
scalable

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 29 / 36



Interpreting the Scalability Function

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 30 / 36



Example 1: Reduction

Sequential algorithm complexity:

T (n, 1) = Θ(n)

Parallel algorithm:

Computational complexity: Θ(n/p)
Communication complexity: Θ(log p)

Parallel overhead: T0(n, p) = Θ(p log p)

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 31 / 36



Example 1: Reduction

Sequential algorithm complexity: T (n, 1) = Θ(n)

Parallel algorithm:

Computational complexity:

Θ(n/p)
Communication complexity: Θ(log p)

Parallel overhead: T0(n, p) = Θ(p log p)

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 31 / 36



Example 1: Reduction

Sequential algorithm complexity: T (n, 1) = Θ(n)

Parallel algorithm:

Computational complexity: Θ(n/p)
Communication complexity:

Θ(log p)

Parallel overhead: T0(n, p) = Θ(p log p)

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 31 / 36



Example 1: Reduction

Sequential algorithm complexity: T (n, 1) = Θ(n)

Parallel algorithm:

Computational complexity: Θ(n/p)
Communication complexity: Θ(log p)

Parallel overhead: T0(n, p) = Θ(p log p)

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 31 / 36



Example 1: Reduction

Isoefficiency relation: n ≥ Cp log p

To maintain same level of efficiency, how must n increase when p
increases?

M(n) = n

Scalability function:

M(Cp log p)/p = C log p

The system has good scalability!

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 32 / 36



Example 1: Reduction

Isoefficiency relation: n ≥ Cp log p

To maintain same level of efficiency, how must n increase when p
increases?

M(n) = n

Scalability function:

M(Cp log p)/p = C log p

The system has good scalability!

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 32 / 36



Example 2: Floyd-Warshall Algorithm

Sequential algorithm complexity:

T (n, 1) = Θ(n3)

Parallel algorithm:

Computational complexity: Θ(n3/p)
Communication complexity: Θ(n2 log p)

Parallel overhead: T0(n, p) = Θ(pn2 log p)

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 33 / 36



Example 2: Floyd-Warshall Algorithm

Sequential algorithm complexity: T (n, 1) = Θ(n3)

Parallel algorithm:

Computational complexity:

Θ(n3/p)
Communication complexity: Θ(n2 log p)

Parallel overhead: T0(n, p) = Θ(pn2 log p)

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 33 / 36



Example 2: Floyd-Warshall Algorithm

Sequential algorithm complexity: T (n, 1) = Θ(n3)

Parallel algorithm:

Computational complexity: Θ(n3/p)
Communication complexity:

Θ(n2 log p)

Parallel overhead: T0(n, p) = Θ(pn2 log p)

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 33 / 36



Example 2: Floyd-Warshall Algorithm

Sequential algorithm complexity: T (n, 1) = Θ(n3)

Parallel algorithm:

Computational complexity: Θ(n3/p)
Communication complexity: Θ(n2 log p)

Parallel overhead: T0(n, p) = Θ(pn2 log p)

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 33 / 36



Example 2: Floyd-Warshall Algorithm

Isoefficiency relation: n3 ≥ Cpn2 log p ⇒ n ≥ Cp log p

To maintain same level of efficiency, how must n increase when p
increases?

M(n) = n2

Scalability function:

M(Cp log p)/p = C 2p log2 p

The system has poor scalability!

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 34 / 36



Example 2: Floyd-Warshall Algorithm

Isoefficiency relation: n3 ≥ Cpn2 log p ⇒ n ≥ Cp log p

To maintain same level of efficiency, how must n increase when p
increases?

M(n) = n2

Scalability function:

M(Cp log p)/p = C 2p log2 p

The system has poor scalability!

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 34 / 36



Review

Performance Analysis

Speedup and Efficiency

Amdahl’s Law

Gustafson-Barsis’ Law

Karp-Flatt Metric

Isoefficiency Metric

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 35 / 36



Next Class

Matrix-vector multiplication

CPD (DEI / IST) Parallel and Distributed Computing – 15 2012-11-8 36 / 36


	Performance Analysis
	Amdahl's Law
	Gustafson-Barsis' Law
	The Karp-Flatt Metric
	Isoefficiency Metric

