
Monte Carlo Methods; Combinatorial Search

Parallel and Distributed Computing

Department of Computer Science and Engineering (DEI)
Instituto Superior Técnico

November 22, 2012

CPD (DEI / IST) Parallel and Distributed Computing – 19 2012-11-22 1 / 30

Outline

Monte Carlo methods

Parallel Search

Backtrack Search

Branch and Bound

CPD (DEI / IST) Parallel and Distributed Computing – 19 2012-11-22 2 / 30

Monte Carlo Method

Solve a problem using statistical sampling.

Applications of the Monte Carlo method:

integrals of arbitrary functions of 6+ dimensions

predicting future values of stocks

solving partial differential equations

sharpening satellite images

modeling cell populations

finding approximate solutions to NP-hard problems

It is estimated that over half the total cycles in parallel systems is spent
with Monte Carlo methods!

CPD (DEI / IST) Parallel and Distributed Computing – 19 2012-11-22 3 / 30

Monte Carlo Method

Solve a problem using statistical sampling.

Applications of the Monte Carlo method:

integrals of arbitrary functions of 6+ dimensions

predicting future values of stocks

solving partial differential equations

sharpening satellite images

modeling cell populations

finding approximate solutions to NP-hard problems

It is estimated that over half the total cycles in parallel systems is spent
with Monte Carlo methods!

CPD (DEI / IST) Parallel and Distributed Computing – 19 2012-11-22 3 / 30

Monte Carlo Method

Solve a problem using statistical sampling.

Applications of the Monte Carlo method:

integrals of arbitrary functions of 6+ dimensions

predicting future values of stocks

solving partial differential equations

sharpening satellite images

modeling cell populations

finding approximate solutions to NP-hard problems

It is estimated that over half the total cycles in parallel systems is spent
with Monte Carlo methods!

CPD (DEI / IST) Parallel and Distributed Computing – 19 2012-11-22 3 / 30

Example of Monte Carlo Method

Computation of π:

Area©
Area�

= πD2/4
D2 = π

4

16
20 = π

4 ⇒ π ≈ 64
20 =3, 2

CPD (DEI / IST) Parallel and Distributed Computing – 19 2012-11-22 4 / 30

Example of Monte Carlo Method

Computation of π:

Area©
Area�

= πD2/4
D2 = π

4
16
20 = π

4 ⇒ π ≈ 64
20 =3, 2

CPD (DEI / IST) Parallel and Distributed Computing – 19 2012-11-22 4 / 30

Example of Monte Carlo Method

Computation of π:

Area©
Area�

= πD2/4
D2 = π

4
16
20 = π

4 ⇒ π ≈ 64
20 =3, 2

CPD (DEI / IST) Parallel and Distributed Computing – 19 2012-11-22 4 / 30

Example of Monte Carlo Method

Computation of π:

Area©
Area�

= πD2/4
D2 = π

4
16
20 = π

4 ⇒ π ≈ 64
20 =3, 2

CPD (DEI / IST) Parallel and Distributed Computing – 19 2012-11-22 4 / 30

Example of Monte Carlo Method

Computation of π:

Area©
Area�

= πD2/4
D2 = π

4
16
20 = π

4 ⇒ π ≈ 64
20 =3, 2

CPD (DEI / IST) Parallel and Distributed Computing – 19 2012-11-22 4 / 30

Example of Monte Carlo Method

Computation of π:

Area©
Area�

= πD2/4
D2 = π

4
16
20 = π

4 ⇒ π ≈ 64
20 =3, 2

CPD (DEI / IST) Parallel and Distributed Computing – 19 2012-11-22 4 / 30

Example of Monte Carlo Method

Computation of π:

Area©
Area�

= πD2/4
D2 = π

4
16
20 = π

4 ⇒ π ≈ 64
20 =3, 2

CPD (DEI / IST) Parallel and Distributed Computing – 19 2012-11-22 4 / 30

Sample Size Defines the Error

n Estimate Error 1/(2
√
n)

10 3,40000 0,23606 0,15811

100 3,36000 0,06952 0,05000

1.000 3,14400 0,00077 0,01581

10.000 3,13920 0,00076 0,00500

100.000 3,14132 0,00009 0,00158

1.000.000 3,14006 0,00049 0,00050

10.000.000 3,14136 0,00007 0,00016

100.000.000 3,14154 0,00002 0,00005

1.000.000.000 3,14155 0,00001 0,00002

CPD (DEI / IST) Parallel and Distributed Computing – 19 2012-11-22 5 / 30

Why Monte Carlo Works

Mean Value Theorem ∫ b

a
f (x)dx = (b − a)f

Monte Carlo methods obtain an estimate for f :

f ≈ 1

n

n∑
i=1

f (xi)

Accuracy increases at a rate of 1/
√
n.

CPD (DEI / IST) Parallel and Distributed Computing – 19 2012-11-22 6 / 30

Why Monte Carlo is Effective

error in Monte Carlo estimate decreases by the factor 1/
√
n

rate of convergence independent of integrand’s dimension

deterministic numerical integration methods do not share this property

hence Monte Carlo superior when integrand has 6 or more dimensions

Monte Carlo methods are typically trivially amenable for parallelization.

Two possible views:

obtain an estimate p times faster

decrease error by
√
p

CPD (DEI / IST) Parallel and Distributed Computing – 19 2012-11-22 7 / 30

Another Example

Statistical Timing Analysis (STA)

Obtain the arrival times in the nodes of a circuit given that the delays are
subject to variation.

Types of variations:

Manufacturing process variations

no two chips are equal
the fabrication of a chip is a sequence of hundreds of operations, each
of which will be performed a little differently on each chip
one of the main sources of variation in chip performances

Environmental or operating conditions

e.g. changes in power supply voltage or operating temperature

Device fatigue phenomena

e.g. electromigration, hot electron effects and NBTI (negative bias
temperature instability)

CPD (DEI / IST) Parallel and Distributed Computing – 19 2012-11-22 8 / 30

STA: Arrival Times Accuracy

Since delay is not given by a deterministic value, deterministic
propagation of arrival times can not be done

If we assume the average and worst-case values for the delays of each
individual node we can do a worst-case analysis

but not accurate enough

Or we can assume that delay variation follows a probability
distribution which is independent for each node

better modeling of real conditions
much harder to propagate distributions

Monte-Carlo comes to the rescue!

CPD (DEI / IST) Parallel and Distributed Computing – 19 2012-11-22 9 / 30

STA: Arrival Times Accuracy

Since delay is not given by a deterministic value, deterministic
propagation of arrival times can not be done

If we assume the average and worst-case values for the delays of each
individual node we can do a worst-case analysis

but not accurate enough

Or we can assume that delay variation follows a probability
distribution which is independent for each node

better modeling of real conditions
much harder to propagate distributions

Monte-Carlo comes to the rescue!

CPD (DEI / IST) Parallel and Distributed Computing – 19 2012-11-22 9 / 30

STA using Monte-Carlo

Repeat N times:

1 Randomly generate a delay value for each nodes

according to the probabilistic distribution at each node

2 Do a deterministic propagation of the arrival times

3 Store computed arrival times

Statistical distribution is obtained:

Sample mean gives us the average
arrival times

Standard deviation gives us a
confidence interval

 0

 0.05

 0.1

 0.15

 0.2

 0.25

-10 -8 -6 -4 -2 0 2 4 6 8 10

’histtraceNx23.txt’
gauss(x,5.09657623,2.01366397)

CPD (DEI / IST) Parallel and Distributed Computing – 19 2012-11-22 10 / 30

STA using Monte-Carlo

Repeat N times:

1 Randomly generate a delay value for each nodes

according to the probabilistic distribution at each node

2 Do a deterministic propagation of the arrival times

3 Store computed arrival times

Statistical distribution is obtained:

Sample mean gives us the average
arrival times

Standard deviation gives us a
confidence interval

 0

 0.05

 0.1

 0.15

 0.2

 0.25

-10 -8 -6 -4 -2 0 2 4 6 8 10

’histtraceNx23.txt’
gauss(x,5.09657623,2.01366397)

CPD (DEI / IST) Parallel and Distributed Computing – 19 2012-11-22 10 / 30

STA Results

Results for some circuits using a grid with 5 machines

CPD (DEI / IST) Parallel and Distributed Computing – 19 2012-11-22 11 / 30

Random Number Generators

Computers are deterministic machines: pseudo-random numbers

Desirable properties of a Random Number Generator:

uniformly distributed

uncorrelated

never cycles

satisfies any statistical test for randomness

reproducible

machine-independent

changing “seed” value changes sequence

easily split into independent subsequences

fast

limited memory requirements

CPD (DEI / IST) Parallel and Distributed Computing – 19 2012-11-22 12 / 30

Random Number Generators

Ideal Random Number Generators are not possible.

finite number of states ⇒ cycles

reproducible ⇒ correlation

Linear Congruential Random Number Generators

Xi = (aXi−1 + c) mod M

Sequence depends on the seed X0.

Lagged Fibonacci Random Number Generators

Xi = Xi−p ∗ Xi−q

where ∗ is a binary operation, ie, exclusive-OR, addition modulo M, etc.

CPD (DEI / IST) Parallel and Distributed Computing – 19 2012-11-22 13 / 30

Random Number Generators

Ideal Random Number Generators are not possible.

finite number of states ⇒ cycles

reproducible ⇒ correlation

Linear Congruential Random Number Generators

Xi = (aXi−1 + c) mod M

Sequence depends on the seed X0.

Lagged Fibonacci Random Number Generators

Xi = Xi−p ∗ Xi−q

where ∗ is a binary operation, ie, exclusive-OR, addition modulo M, etc.

CPD (DEI / IST) Parallel and Distributed Computing – 19 2012-11-22 13 / 30

Random Number Generators

Ideal Random Number Generators are not possible.

finite number of states ⇒ cycles

reproducible ⇒ correlation

Linear Congruential Random Number Generators

Xi = (aXi−1 + c) mod M

Sequence depends on the seed X0.

Lagged Fibonacci Random Number Generators

Xi = Xi−p ∗ Xi−q

where ∗ is a binary operation, ie, exclusive-OR, addition modulo M, etc.

CPD (DEI / IST) Parallel and Distributed Computing – 19 2012-11-22 13 / 30

Parallel Random Number Generators

Centralized: master-slave approach

Decentralized:

Leapfrog

sequence splitting

independent sequences

Independent sequences tend to work well as long as each task uses
different seeds.

CPD (DEI / IST) Parallel and Distributed Computing – 19 2012-11-22 14 / 30

Parallel Random Number Generators

Centralized: master-slave approach

Decentralized:

Leapfrog

sequence splitting

independent sequences

Independent sequences tend to work well as long as each task uses
different seeds.

CPD (DEI / IST) Parallel and Distributed Computing – 19 2012-11-22 14 / 30

Parallel Random Number Generators

Centralized: master-slave approach

Decentralized:

Leapfrog

sequence splitting

independent sequences

Independent sequences tend to work well as long as each task uses
different seeds.

CPD (DEI / IST) Parallel and Distributed Computing – 19 2012-11-22 14 / 30

Combinatorial Search

Combinatorial search algorithm: find one or more optimal or suboptimal
solutions in a defined problem space

Decision problems: determine if there is a solution to a given set of
constraints

Satisfiability (SAT)

Hamiltonian path

Eulerian path

Optimization problems: find a solution that maximizes or minimizes a cost
function under a set of constraints

Shortest path

Traveling salesman (TSP)

Maximum satisfiability (MAX-SAT)

CPD (DEI / IST) Parallel and Distributed Computing – 19 2012-11-22 15 / 30

Combinatorial Problems

“Easy” combinatorial problems have known algorithms that run in
polynomial-time.

Shortest path

Eulerian path

The only known solutions to “hard” problems run in exponential-time.

Satisfiability (SAT)

Hamiltonian path

Traveling salesman (TSP)

Maximum satisfiability (MAX-SAT)

CPD (DEI / IST) Parallel and Distributed Computing – 19 2012-11-22 16 / 30

Combinatorial Problems

“Easy” combinatorial problems have known algorithms that run in
polynomial-time.

Shortest path

Eulerian path

The only known solutions to “hard” problems run in exponential-time.

Satisfiability (SAT)

Hamiltonian path

Traveling salesman (TSP)

Maximum satisfiability (MAX-SAT)

CPD (DEI / IST) Parallel and Distributed Computing – 19 2012-11-22 16 / 30

Backtrack Search

Backtrack search uses a depth-first search (typically recursive) to consider
alternative solutions to a combinatorial search problem.

Backtrack occurs when:

a node has no children

all of a node’s children have been explored

current solution does not verify constraints

CPD (DEI / IST) Parallel and Distributed Computing – 19 2012-11-22 17 / 30

Backtrack Search

Choice of 1st variable

Choice of 2nd variable

Choice of 3rd variable

If b is the branching factor,

at level k of the tree we have bk nodes.

up to level k of the tree we have bk+1−b
b−1 + 1 nodes.

CPD (DEI / IST) Parallel and Distributed Computing – 19 2012-11-22 18 / 30

Backtrack Search

Choice of 1st variable

Choice of 2nd variable

Choice of 3rd variable

If b is the branching factor,

at level k of the tree we have bk nodes.

up to level k of the tree we have bk+1−b
b−1 + 1 nodes.

CPD (DEI / IST) Parallel and Distributed Computing – 19 2012-11-22 18 / 30

Parallel Backtrack Search

First strategy: suppose p = bk and give each processor a subtree.

each process searches all nodes to depth k

but then explores only one of subtrees rooted at level k

Typically, k = logb p is much smaller than the depth of the tree.

Time required by each process to traverse first k levels of state space tree
inconsequential.

CPD (DEI / IST) Parallel and Distributed Computing – 19 2012-11-22 19 / 30

Parallel Backtrack Search

CPD (DEI / IST) Parallel and Distributed Computing – 19 2012-11-22 20 / 30

Parallel Backtrack Search

What if p 6= bk?

define a level m up to which all processes execute redundant search in
parallel.

at level m, assign a subset of the bm subtrees to the p processes

What value of m to use?

The larger the value of m

the larger the redundant computation

but better load balancing

CPD (DEI / IST) Parallel and Distributed Computing – 19 2012-11-22 21 / 30

Parallel Backtrack Search

What if p 6= bk?

define a level m up to which all processes execute redundant search in
parallel.

at level m, assign a subset of the bm subtrees to the p processes

What value of m to use?

The larger the value of m

the larger the redundant computation

but better load balancing

CPD (DEI / IST) Parallel and Distributed Computing – 19 2012-11-22 21 / 30

Parallel Backtrack Search

What if p 6= bk?

define a level m up to which all processes execute redundant search in
parallel.

at level m, assign a subset of the bm subtrees to the p processes

What value of m to use?

The larger the value of m

the larger the redundant computation

but better load balancing

CPD (DEI / IST) Parallel and Distributed Computing – 19 2012-11-22 21 / 30

Parallel Backtrack Search

Example: p = 5 processors exploring a state space tree with branching
factor b = 3 and maximum depth 10.

CPD (DEI / IST) Parallel and Distributed Computing – 19 2012-11-22 22 / 30

Branch and Bound

Branch and Bound, BB, is a general algorithm for optimization problems
that also performs a depth-first search, but is able to prune its search by
using upper and lower estimated bounds of the cost function.

Example: find the minimum number of moves to solve the 8-puzzle.

CPD (DEI / IST) Parallel and Distributed Computing – 19 2012-11-22 23 / 30

Branch and Bound

CPD (DEI / IST) Parallel and Distributed Computing – 19 2012-11-22 24 / 30

Branch and Bound

could solve puzzle by pursuing breadth-first search of state space tree

we want to examine as few nodes as possible

can speed search if we associate with each node an estimate of
minimum number of tile moves needed to solve the puzzle, given
moves made so far

Compute Manhattan distance of each tile to each final position
⇒ overall sum is a lower bound on number of moves still required

If current depth + lower bound higher than an existing solution, discard
subtree.

CPD (DEI / IST) Parallel and Distributed Computing – 19 2012-11-22 25 / 30

Branch and Bound

could solve puzzle by pursuing breadth-first search of state space tree

we want to examine as few nodes as possible

can speed search if we associate with each node an estimate of
minimum number of tile moves needed to solve the puzzle, given
moves made so far

Compute Manhattan distance of each tile to each final position
⇒ overall sum is a lower bound on number of moves still required

If current depth + lower bound higher than an existing solution, discard
subtree.

CPD (DEI / IST) Parallel and Distributed Computing – 19 2012-11-22 25 / 30

Branch and Bound

could solve puzzle by pursuing breadth-first search of state space tree

we want to examine as few nodes as possible

can speed search if we associate with each node an estimate of
minimum number of tile moves needed to solve the puzzle, given
moves made so far

Compute Manhattan distance of each tile to each final position
⇒ overall sum is a lower bound on number of moves still required

If current depth + lower bound higher than an existing solution, discard
subtree.

CPD (DEI / IST) Parallel and Distributed Computing – 19 2012-11-22 25 / 30

Branch and Bound

CPD (DEI / IST) Parallel and Distributed Computing – 19 2012-11-22 26 / 30

Parallel Branch and Bound

Sequential algorithm uses a priority queue.

Single priority queue too expensive to maintain in a distributed parallel
system.
⇒ Multiple Priority Queues

each process maintains separate priority queue of unexamined
subproblems

each process retrieves subproblem with smallest lower bound to
continue search

occasionally processes send unexamined subproblems to other
processes

CPD (DEI / IST) Parallel and Distributed Computing – 19 2012-11-22 27 / 30

Parallel Branch and Bound

sequential algorithm searches minimum number of nodes (never
explores nodes with lower bounds greater than cost of optimal
solution)

parallel algorithm may examine unnecessary nodes because each
process searching locally best nodes

exchanging subproblems

promotes distribute of subproblems with good lower bounds, reducing
amount of wasted work
increases communication overhead

Conditions for solution found be guaranteed optimal: all nodes in
state space tree with smaller lower bounds must be explored

CPD (DEI / IST) Parallel and Distributed Computing – 19 2012-11-22 28 / 30

Review

Monte Carlo methods

Parallel Search

Backtrack Search

Branch and Bound

CPD (DEI / IST) Parallel and Distributed Computing – 19 2012-11-22 29 / 30

Next Class

Graph algorithms

CPD (DEI / IST) Parallel and Distributed Computing – 19 2012-11-22 30 / 30

	Monte Carlo
	Combinatorial Search

