
Parallel Numerical Algorithms:
Iterative Linear Systems, Differential Equations and

Finite Difference Methods

Parallel and Distributed Computing

Department of Computer Science and Engineering (DEI)
Instituto Superior Técnico

December 6, 2012

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 1 / 40



Outline

Iterative Methods for Linear Systems

Relaxation Methods

Linear Second-order Partial Differential Equations (PDEs)

Finite difference methods

Example: steady-state heat distribution

Ghost points

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 2 / 40



Solving Linear Systems: recall

Direct Methods: solution is sought directly, at once

Gaussian Elimination

LU Factorization

Iterative Methods: solution is sought iteratively, by improvement

Relaxation Methods

Krylov Methods

Preconditioning

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 3 / 40



Iterative Methods for Linear Systems

Iterative methods for solving linear system Ax = b begin with initial
guess for solution and successively improve it until solution is as
accurate as desired

In theory, infinite number of iterations might be required to converge
to exact solution

In practice, iteration terminates when residual ‖r‖ = ‖b − Ax‖, or
some other measure of error, is as small as desired

Iterative methods are especially useful when matrix A is sparse
because, unlike direct methods, no fill is incurred

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 4 / 40



Jacobi Method

Beginning with initial guess x (0), Jacobi method computes next
iterate by solving for each component of x in terms of others

x
(k+1)
i =

bi −
∑
j=1

aijx
(k)
j

 /aii , i = 1, · · · , n

If D, L, and U are diagonal, strict lower triangular, and strict upper
triangular portions of A, then Jacobi method can be written as

x (k+1) = D−1
(
b − (L + U)x (k)

)

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 5 / 40



Jacobi Method

Jacobi method requires nonzero diagonal entries, which can usually
be accomplished by permuting rows and columns if not already true

Jacobi method requires duplicate storage for x , since no component
can be overwritten until all new values have been computed

Components of new iteration do not depend on each other, so they
can be computed simultaneously

Jacobi method does not always converge, but it is guaranteed to
converge under conditions that are often satisfied (e.g., if matrix is
strictly diagonally dominant), though convergence rate may be very
slow

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 6 / 40



Gauss-Seidel Method

Faster convergence can be achieved by using each new component
value as soon as it has been computed rather than waiting until next
iteration

This gives Gauss-Seidel method

x
(k+1)
i =

bi −
∑
j<i

aijx
(k+1)
j −

∑
j>i

aijx
(k)
j

 /aii

Using same notation as for Jacobi, Gauss-Seidel method can be
written

x (k+1) = (D + L)−1
(
b − Ux (k)

)

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 7 / 40



Gauss-Seidel Method

Gauss-Seidel requires nonzero diagonal entries. Gauss-Seidel does not
require duplicate storage for x , since component values can be
overwritten as they are computed

But each component depends on previous ones, so they must be
computed successively

Gauss-Seidel does not always converge, but it is guaranteed to
converge under conditions that are somewhat weaker than those for
Jacobi method (e.g., if matrix is symmetric and positive definite)

Gauss-Seidel converges about twice as fast as Jacobi, but may still be
very slow

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 8 / 40



Parallel Implementation

Iterative methods for linear systems are composed of basic operations
such as

vector updates

inner products

matrix-vector multiplication

solution of triangular systems

In parallel implementation, both data and operations are partitioned
across multiple tasks

In addition to communication required for these basic operations,
necessary convergence test may require additional communication
(e.g., sum or max reduction)

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 9 / 40



Partitioning of Vectors

Iterative methods typically require several vectors, including solution
x , right-hand side b, residual r = b − Ax , and possibly others

Even when matrix A is sparse, these vectors are usually dense

These dense vectors are typically uniformly partitioned among p tasks,
with given task holding same set of component indices of each vector

Thus, vector updates require no communication, whereas inner
products of vectors require reductions across tasks

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 10 / 40



Partitioning of Sparse Matrix

Sparse matrix A can be partitioned among tasks by rows, by columns,
or by submatrices

Partitioning by submatrices may give uneven distribution of nonzeros
among tasks; indeed, some submatrices may contain no nonzeros at
all

Partitioning by rows or by columns tends to yield more uniform
distribution because sparse matrices typically have about same
number of nonzeros in each row or column

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 11 / 40



Sparse MatVec with 1-D Partitioning

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 12 / 40



Sparse MatVec with 2-D Partitioning

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 13 / 40



Row Partitioning of Sparse Matrix

Suppose that each task is assigned n/p rows, yielding p tasks, where
for simplicity we assume that p divides n

In dense matrix-vector multiplication, since each task owns only n/p
components of vector operand, communication is required to obtain
remaining components

If matrix is sparse, however, few components may actually be needed,
and these should preferably be stored in neighboring tasks

Assignment of rows to tasks by contiguous blocks or cyclically would
not, in general, result in desired proximity of vector components

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 14 / 40



Two-Dimensional Partitioning

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 15 / 40



Parallel Jacobi and Gauss-Seidel

Contiguous groups of variables are assigned to each task, so most
communication is internal, and external communication is limited to
nearest neighbors in 1-D mesh

More generally, Jacobi method usually parallelizes well if underlying
grid is partitioned in this manner, since all components of x can be
updated simultaneously

Unfortunately, Gauss-Seidel methods require successive updating of
solution components in given order (in effect, solving triangular
system), rather than permitting simultaneous updating as in Jacobi
method

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 16 / 40



Red-Black Ordering

Apparent sequential order can be broken, however, if components are
reordered according to coloring of underlying graph

For 5-point discretization on square grid, for example, color alternate
nodes in each dimension red and others black, giving color pattern of
chess or checker board

Then all red nodes can be updated simultaneously, as can all black
nodes, so algorithm proceeds in alternating phases, first updating all
nodes of one color, then those of other color, repeating until
convergence

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 17 / 40



Row-Wise Ordering for 2-D Grid

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 18 / 40



Red-Black Ordering for 2-D Grid

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 19 / 40



Partial Differential Equations

Partial Differential Equations, PDE

Equation containing derivatives of a function of two or more variables
(Ordinary if single variable).

u = f (x , y) uy =
∂f

∂y
uxy =

∂2f

∂x∂y

Second-Order PDE: contains no partial derivatives of order more than two.

Linear second-order PDEs are of the form:

Auxx + 2Buxy + Cuyy + Eux + Fuy + Gu = H

A, B, C , D, E , F , G and H are functions of x and y only.

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 20 / 40



Partial Differential Equations

Partial Differential Equations, PDE

Equation containing derivatives of a function of two or more variables
(Ordinary if single variable).

u = f (x , y) uy =
∂f

∂y
uxy =

∂2f

∂x∂y

Second-Order PDE: contains no partial derivatives of order more than two.

Linear second-order PDEs are of the form:

Auxx + 2Buxy + Cuyy + Eux + Fuy + Gu = H

A, B, C , D, E , F , G and H are functions of x and y only.

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 20 / 40



Partial Differential Equations

Partial Differential Equations, PDE

Equation containing derivatives of a function of two or more variables
(Ordinary if single variable).

u = f (x , y) uy =
∂f

∂y
uxy =

∂2f

∂x∂y

Second-Order PDE: contains no partial derivatives of order more than two.

Linear second-order PDEs are of the form:

Auxx + 2Buxy + Cuyy + Eux + Fuy + Gu = H

A, B, C , D, E , F , G and H are functions of x and y only.

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 20 / 40



Linear second-order PDEs

Auxx + 2Buxy + Cuyy + Eux + Fuy + Gu = H

1. πuxy + x2uyy = sin(xy)

2. u2
xx + uyy = 0

3. uuxy + 4xuyy = x + y

4. sin(xy)ux + 6xyuxy = 0

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 21 / 40



Linear second-order PDEs

Auxx + 2Buxy + Cuyy + Eux + Fuy + Gu = H

1. πuxy + x2uyy = sin(xy)

2. u2
xx + uyy = 0

3. uuxy + 4xuyy = x + y

4. sin(xy)ux + 6xyuxy = 0

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 21 / 40



Linear second-order PDEs

Auxx + 2Buxy + Cuyy + Eux + Fuy + Gu = H

1. πuxy + x2uyy = sin(xy)

2. u2
xx + uyy = 0

3. uuxy + 4xuyy = x + y

4. sin(xy)ux + 6xyuxy = 0

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 21 / 40



Linear second-order PDEs

Auxx + 2Buxy + Cuyy + Eux + Fuy + Gu = H

1. πuxy + x2uyy = sin(xy)

2. u2
xx + uyy = 0

3. uuxy + 4xuyy = x + y

4. sin(xy)ux + 6xyuxy = 0

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 21 / 40



Linear second-order PDEs

Auxx + 2Buxy + Cuyy + Eux + Fuy + Gu = H

1. πuxy + x2uyy = sin(xy)

2. u2
xx + uyy = 0

3. uuxy + 4xuyy = x + y

4. sin(xy)ux + 6xyuxy = 0

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 21 / 40



Elliptic PDEs

Auxx + 2Buxy + Cuyy + Eux + Fuy + Gu = H

Elliptic PDEs: B2 − AC < 0

Poisson Equation: uxx + uyy = f (x , y) (A = C = 1, B = 0)

(if f (x , y) = 0, called Laplace Equation)

potential problems: electric, magnetic, gravitic

distribution of heat or charge in conductors

certain fluid and torsion problems

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 22 / 40



Parabolic PDEs

Auxx + 2Buxy + Cuyy + Eux + Fuy + Gu = H

Parabolic PDEs: B2 − AC = 0

Heat Equation or Diffusion Equation: kuxx = ut (A = k , B = C = 0)

heat conduction in solids

diffusion of liquids and gases

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 23 / 40



Hyperbolic PDEs

Auxx + 2Buxy + Cuyy + Eux + Fuy + Gu = H

Hyperbolic PDEs: B2 − AC > 0

Wave Equation: c2uxx = utt (A = c2, B = 0, C = −1)

wave propagation model

vibration of strings and membranes

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 24 / 40



Finite Difference Methods

In general, not possible to obtain an analytical solution to a PDE.

Finite Difference Methods

Numerical methods that obtain an approximate result of PDEs by dividing
the variables (often time and space) into discrete intervals.

Approximation to the first derivative of f (x), f ′(x):

f ′(x) ≈ f (x + h/2)− f (x − h/2)

h

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 25 / 40



Finite Difference Methods

In general, not possible to obtain an analytical solution to a PDE.

Finite Difference Methods

Numerical methods that obtain an approximate result of PDEs by dividing
the variables (often time and space) into discrete intervals.

Approximation to the first derivative of f (x), f ′(x):

f ′(x) ≈ f (x + h/2)− f (x − h/2)

h

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 25 / 40



Finite Difference Methods

Approximation to the second derivative of f (x), f ′′(x):

f ′′(x) ≈
f (x+h/2+h/2)−f (x+h/2−h/2)

h − f (x−h/2+h/2)−f (x−h/2−h/2)
h

h

=
f (x + h)− f (x)− (f (x)− f (x − h))

h2

=
f (x + h)− 2f (x) + f (x − h)

h2

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 26 / 40



Steady-State Heat Distribution

Problem: find the steady-state heat distribution over a thin square plate.

Steam

Steam

Steam

Ice

Underlying PDE is the Poisson Equation:

uxx + uyy = f (x , y) 0 ≤ x ≤ a, 0 ≤ y ≤ b

Boundary conditions:

u(x , 0) = G1(x) u(x , a) = G2(x) 0 ≤ x ≤ a

u(0, y) = G3(y) u(a, y) = G4(y) 0 ≤ y ≤ b

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 27 / 40



Steady-State Heat Distribution

Sequential program: create a 2-dimensional grid, with dimensions x and y
divided into n and m pieces, respectively. Iteratively compute u(xi , yj)
until convergence.

Let h = x/n and k = y/m.

uxx(xi , yj) ≈
u(xi + h, yj)− 2u(xi , yj) + u(xi − h, yj)

h2

=
ui+1,j − 2ui ,j + ui−1,j

h2

uyy (xi , yj) ≈
ui ,j+1 − 2ui ,j + ui ,j−1

k2

Inserting in the original equation:

ui+1,j − 2ui ,j + ui−1,j

h2
+

ui ,j+1 − 2ui ,j + ui ,j−1

k2
= fi ,j

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 28 / 40



Steady-State Heat Distribution

ui+1,j − 2ui ,j + ui−1,j

h2
+

ui ,j+1 − 2ui ,j + ui ,j−1

k2
= fi ,j

In our case,

no internal sources, fi ,j = 0

laterals and bottom at 100o, ui ,1 = u1,j = ua,j = 100

top at 0o, ui ,b = 0

also, if we use h = k

simplifies to:

ui+1,j − 2ui ,j + ui−1,j + ui ,j+1 − 2ui ,j + ui ,j−1 = 0

Solving for ui ,j :

ui ,j =
ui+1,j + ui−1,j + ui ,j+1 + ui ,j−1

4

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 29 / 40



Steady-State Heat Distribution

ui ,j =
ui+1,j + ui−1,j + ui ,j+1 + ui ,j−1

4

Jacobi method:

start with an initial guess of ui ,j

compute ui ,j at iteration q from values of q − 1

stop when values between iterations within a given error

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 30 / 40



Parallel Heat Distribution

Primitive task:

ui ,j in each iteration

Communication: adjacent cells, ui−1,j , ui+1,j , ui ,j−1, ui ,j+1

Agglomeration: row-wise block stripped

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

10

11

12

14

15

16

1

2

3

4

5

6

7

8

9

13

Sideways within process, what about top/bottom?

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 31 / 40



Parallel Heat Distribution

Primitive task: ui ,j in each iteration

Communication:

adjacent cells, ui−1,j , ui+1,j , ui ,j−1, ui ,j+1

Agglomeration: row-wise block stripped

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

10

11

12

14

15

16

1

2

3

4

5

6

7

8

9

13

Sideways within process, what about top/bottom?

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 31 / 40



Parallel Heat Distribution

Primitive task: ui ,j in each iteration

Communication: adjacent cells, ui−1,j , ui+1,j , ui ,j−1, ui ,j+1

Agglomeration:

row-wise block stripped

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

10

11

12

14

15

16

1

2

3

4

5

6

7

8

9

13

Sideways within process, what about top/bottom?

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 31 / 40



Parallel Heat Distribution

Primitive task: ui ,j in each iteration

Communication: adjacent cells, ui−1,j , ui+1,j , ui ,j−1, ui ,j+1

Agglomeration: row-wise block stripped

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

10

11

12

14

15

16

1

2

3

4

5

6

7

8

9

13

Sideways within process, what about top/bottom?

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 31 / 40



Parallel Heat Distribution

Primitive task: ui ,j in each iteration

Communication: adjacent cells, ui−1,j , ui+1,j , ui ,j−1, ui ,j+1

Agglomeration: row-wise block stripped
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

10

11

12

14

15

16

1

2

3

4

4

5

5

6

7

8

8

9

12

9

13

13

At the end of each iteration, each process sends the top and bottom lines.

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 31 / 40



Ghost Points

Ghost Points

Memory locations used to store redundant copies of data held by
neighboring processes

Allocating ghost points as extra rows / columns simplifies parallel
algorithms by allowing same loop to update all cells.

How many rows for ghost points?

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 32 / 40



Ghost Points

Ghost Points

Memory locations used to store redundant copies of data held by
neighboring processes

Allocating ghost points as extra rows / columns simplifies parallel
algorithms by allowing same loop to update all cells.

How many rows for ghost points?

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 32 / 40



Ghost Points

if only one row/column transmitted, communication time may be
dominated by message latency

if we send two, we can advance simulation two time steps before
another communication
⇒ however we need to replicate computation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

11

12

14

15

16

11

12

14

13

13

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 33 / 40



Ghost Points

if only one row/column transmitted, communication time may be
dominated by message latency

if we send two, we can advance simulation two time steps before
another communication
⇒ however we need to replicate computation

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 33 / 40



Complexity Analysis of Row-wise Parallel Algorithm

(analysis per iteration, and a single ghost row)

Sequential time complexity:

Θ(n2)

Parallel computational complexity: Θ(n
2

p )

Parallel communication complexity: Θ(n)
(two sends and two receives of n elements)

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 34 / 40



Complexity Analysis of Row-wise Parallel Algorithm

(analysis per iteration, and a single ghost row)

Sequential time complexity: Θ(n2)

Parallel computational complexity:

Θ(n
2

p )

Parallel communication complexity: Θ(n)
(two sends and two receives of n elements)

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 34 / 40



Complexity Analysis of Row-wise Parallel Algorithm

(analysis per iteration, and a single ghost row)

Sequential time complexity: Θ(n2)

Parallel computational complexity: Θ(n
2

p )

Parallel communication complexity:

Θ(n)
(two sends and two receives of n elements)

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 34 / 40



Complexity Analysis of Row-wise Parallel Algorithm

(analysis per iteration, and a single ghost row)

Sequential time complexity: Θ(n2)

Parallel computational complexity: Θ(n
2

p )

Parallel communication complexity: Θ(n)
(two sends and two receives of n elements)

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 34 / 40



Isoefficiency Analysis of Row-wise Parallel Algorithm

Isoefficiency analysis: T (n, 1) ≥ CT0(n, p)

(T (n, 1) sequential time; T0(n, p) parallel overhead)

Sequential time complexity: T (n, 1) = Θ(n2)

Parallel overhead dominated by communication: Θ(n)

T0(n, p) = p ×Θ(n) = Θ(pn)

n2 ≥ Cpn ⇒ n ≥ Cp

Scalability function: M(f (p))/p

M(n) = n2 ⇒ M(Cp)

p
=

C 2p2

p
= C 2p

⇒ System is not highly scalable.

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 35 / 40



Isoefficiency Analysis of Row-wise Parallel Algorithm

Isoefficiency analysis: T (n, 1) ≥ CT0(n, p)

(T (n, 1) sequential time; T0(n, p) parallel overhead)

Sequential time complexity: T (n, 1) = Θ(n2)

Parallel overhead dominated by communication: Θ(n)

T0(n, p) = p ×Θ(n) = Θ(pn)

n2 ≥ Cpn ⇒ n ≥ Cp

Scalability function: M(f (p))/p

M(n) = n2 ⇒ M(Cp)

p
=

C 2p2

p
= C 2p

⇒ System is not highly scalable.

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 35 / 40



Isoefficiency Analysis of Row-wise Parallel Algorithm

Isoefficiency analysis: T (n, 1) ≥ CT0(n, p)

(T (n, 1) sequential time; T0(n, p) parallel overhead)

Sequential time complexity: T (n, 1) = Θ(n2)

Parallel overhead dominated by communication: Θ(n)

T0(n, p) = p ×Θ(n) = Θ(pn)

n2 ≥ Cpn ⇒ n ≥ Cp

Scalability function: M(f (p))/p

M(n) = n2 ⇒ M(Cp)

p
=

C 2p2

p
= C 2p

⇒ System is not highly scalable.

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 35 / 40



Parallel Heat Distribution

Primitive task: ui ,j in each iteration

Communication: adjacent cells, ui−1,j , ui+1,j , ui ,j−1, ui ,j+1

Agglomeration: checkerboard block decomposition

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

10

11

12

14

15

16

1

2

3

4

5

6

7

8

9

13

Ghost points?

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 36 / 40



Parallel Heat Distribution

Primitive task: ui ,j in each iteration

Communication: adjacent cells, ui−1,j , ui+1,j , ui ,j−1, ui ,j+1

Agglomeration: checkerboard block decomposition
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

10

11

12

14

15

16

1

2

3

4

5

6

7

8

9

13

12

13

13 129

9

8

85

5

4

4

At the end of each iteration, each process sends the top, bottom and
sides.

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 36 / 40



Complexity Analysis of Checkerboard Decomposition

(analysis per iteration, and a single ghost row/column)

Sequential time complexity: Θ(n2)

Parallel computational complexity: Θ(n
2

p )

Parallel communication complexity:

Θ(n/
√
p)

(four sends and four receives of n√
p elements)

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 37 / 40



Complexity Analysis of Checkerboard Decomposition

(analysis per iteration, and a single ghost row/column)

Sequential time complexity: Θ(n2)

Parallel computational complexity: Θ(n
2

p )

Parallel communication complexity: Θ(n/
√
p)

(four sends and four receives of n√
p elements)

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 37 / 40



Isoefficiency Analysis of Checkerboard Parallel Algorithm

Isoefficiency analysis: T (n, 1) ≥ CT0(n, p)

(T (n, 1) sequential time; T0(n, p) parallel overhead)

Sequential time complexity: T (n, 1) = Θ(n2)

Parallel overhead dominated by communication: Θ(n/
√
p)

T0(n, p) = p ×Θ(n/
√
p) = Θ(n

√
p)

n2 ≥ Cn
√
p ⇒ n ≥ C

√
p

Scalability function: M(f (p))/p

M(n) = n2 ⇒
M(C

√
p)

p
=

C 2p

p
= C 2

⇒ System is perfectably Scalable!

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 38 / 40



Isoefficiency Analysis of Checkerboard Parallel Algorithm

Isoefficiency analysis: T (n, 1) ≥ CT0(n, p)

(T (n, 1) sequential time; T0(n, p) parallel overhead)

Sequential time complexity: T (n, 1) = Θ(n2)

Parallel overhead dominated by communication: Θ(n/
√
p)

T0(n, p) = p ×Θ(n/
√
p) = Θ(n

√
p)

n2 ≥ Cn
√
p ⇒ n ≥ C

√
p

Scalability function: M(f (p))/p

M(n) = n2 ⇒
M(C

√
p)

p
=

C 2p

p
= C 2

⇒ System is perfectably Scalable!

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 38 / 40



Isoefficiency Analysis of Checkerboard Parallel Algorithm

Isoefficiency analysis: T (n, 1) ≥ CT0(n, p)

(T (n, 1) sequential time; T0(n, p) parallel overhead)

Sequential time complexity: T (n, 1) = Θ(n2)

Parallel overhead dominated by communication: Θ(n/
√
p)

T0(n, p) = p ×Θ(n/
√
p) = Θ(n

√
p)

n2 ≥ Cn
√
p ⇒ n ≥ C

√
p

Scalability function: M(f (p))/p

M(n) = n2 ⇒
M(C

√
p)

p
=

C 2p

p
= C 2

⇒ System is perfectably Scalable!

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 38 / 40



Review

Iterative Methods for Linear Systems

Relaxation Methods

Linear Second-order Partial Differential Equations (PDEs)

Finite difference methods

Example: steady-state heat distribution

Ghost points

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 39 / 40



Next Class

Map-Reduce

ccNUMA

CPD (DEI / IST) Parallel and Distributed Computing – 23 2012-12-6 40 / 40


	Iterative Methods for Linear Systems
	Relaxation Methods

	Partial Differential Equations
	Finite Difference
	Steady-State Heat Distribution
	Ghost Points

