Parallel Computing

CS 1202
CIE 3
$13^{\text {th }}$ March 2013

1. Discuss the parallel algorithm for the pipelined version of Gaussian elimination with column pivoting to solve a system of linear equations $A x=b$. How this algorithm is different from the column-oriented and roworiented algorithms? [5M] Discuss its scalability? [2M]
2. Discuss briefly the algorithm for parallel sorting by regular sampling. Discuss its algorithmic complexity and scalability? [6M]
3. Discuss the Cannon's algorithm briefly. Is it scalable, discuss ? [5M] Does the algorithm works for the case when matrix dimension is not a multiple of ' p ', the number of processes ? If not, how will you modify it to make it work for this case ? [2m]
[1 Mark each]
4. In MPI_Comm_split, if two processes of the same color are assigned the same key, then []
a) error results.
b) their rank numbers in the new communicator are ordered according to their relative rank order in the old communicator.
c) they both share the same rank in the new communicator.
5. MPI_Comm_split(old_comm, color, key, new_comm) is equivalent to MPI_Comm_create(old_comm, group, new_comm) when
a) color=lam, key=0; calling process lam belongs to group; ELSE color=MPI_UNDEFINED for all other processes in old_comm.
b) color=0, key=lam; calling process lam belongs to group; ELSE color=MPI_UNDEFINED for all other processes in old_comm.
c) color $=0$, key $=0$
6. With MPI_Cart_shift(comm, direction, displ, source, dest), if the calling process is the first or the last entry along the shift direction and that displ is greater than 0 , then
a) error results.
b) MPI_Cart_shift returns source and dest if periodicity is imposed along the shift direction. Otherwise, source and/or dest return MPI_UNDEFINED.
c) error results unless periodicity is imposed along the shift direction.
7. Assume the only communicator used in this problem is MPI_COMM_WORLD. After calling MPI_INIT, process 1 immediately sends two messages to process 0 . The first message sent has tag 100 , and the second message sent has tag 200. After calling MPI_INIT and verifying there are at least 2 processes in MPI_COMM_WORLD, process 0 calls MPI_RECV with the source argument set to 1 and the tag argument set to 200. Choose the best answer.
a) Process 0 is deadlocked, since it attempted to receive the second message before receiving the first.
b) Process 0 receives the second message sent by process 1 , even though the first message has not yet been received.
c) None of the above.
8. When using MPI_Cart_create, if the cartesian grid size is larger than processes available in old_comm, then:
a) error results.
b) the cartesian grid is automatically reduced to match processes available in old_comm.
c) more processes are added to match the requested cartesian grid size if possible; otherwise error results.
9. In MPI, a reduction (MPI_Reduce) is a form of \qquad communication.
10. What is meant by the term "Embarrassingly Parallel" computation? []
a) All parallel computations are embarrassingly parallel computations
b) A computation that can be divided into parallel parts in an obvious fashion without the parts generally needing to communicate with each other.
c) One that is simple.
d) A computation that cannot be divided into parallel parts.
e) A P2P (peer-to-peer) computation
f) None of the other answers
11. Consider an MPI code running on four processors, denoted A, B, C, and D. In the default communicator MPI_COMM_WORLD their ranks are 0-3, respectively. Assume that we have defined another communicator, called USER_COMM, consisting of processors B and D. Which one of the following statements about USER_COMM is always true? []
a) Processors B and D have ranks 1 and 3, respectively.
b) Processors B and D have ranks 0 and 1 , respectively.
c) Processors B and D have ranks 1 and 3 , but which has which is in general undefined.
d) Processors B and D have ranks 0 and 1 , but which has which is in general undefined.
