Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Parallel Programming in C with MPI and OpenMP

Michael J. Quinn

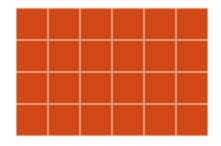
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

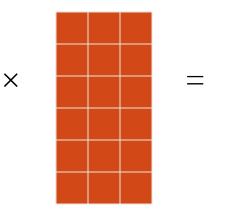
Chapter 11

Matrix Multiplication

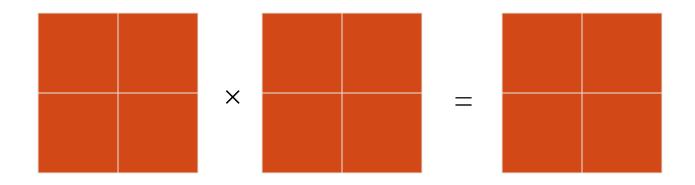
Iterative, Row-oriented Algorithm

Series of inner product (dot product) operations



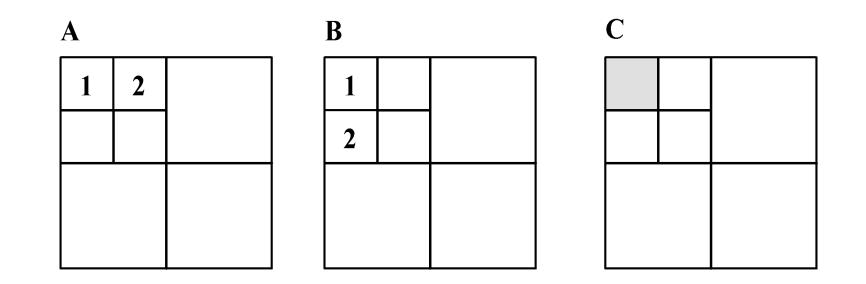


Block Matrix Multiplication



Replace scalar multiplication with matrix multiplication Replace scalar addition with matrix addition

Recurse Until B Small Enough

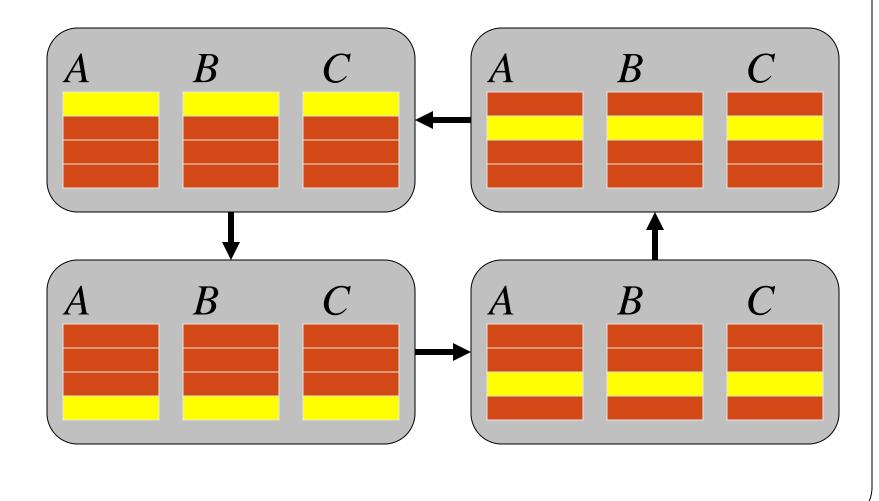


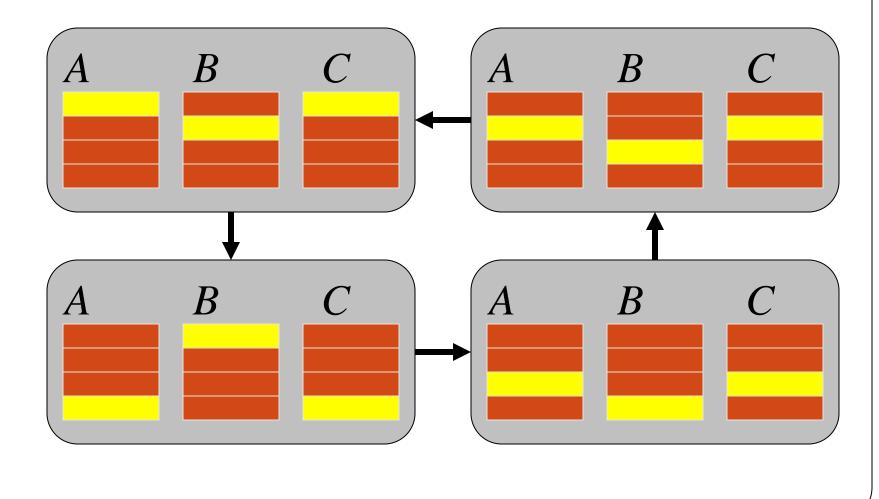
First Parallel Algorithm

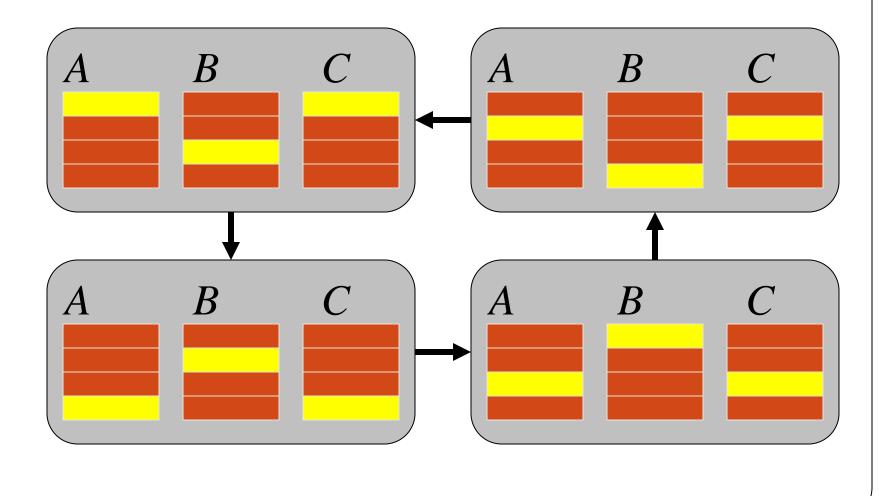
- Partitioning
 - Divide matrices into rows
 - Each primitive task has corresponding rows of three matrices
- Communication
 - Each task must eventually see every row of B
 - Organize tasks into a ring

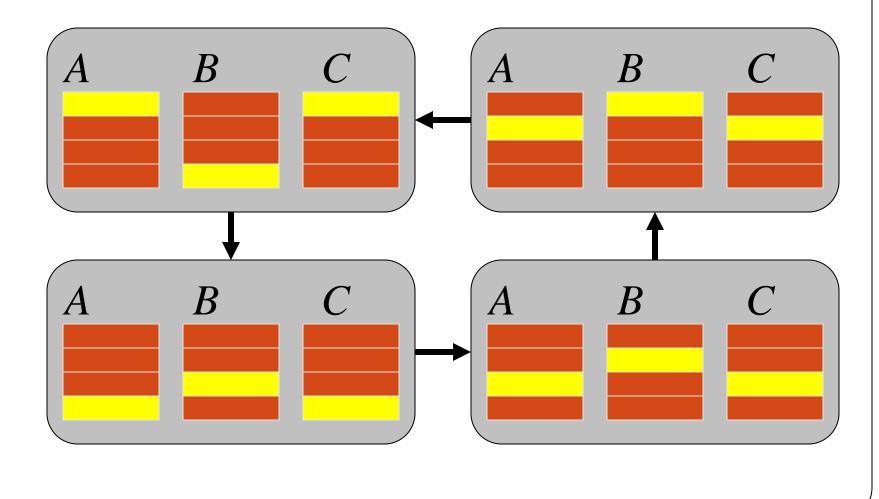
First Parallel Algorithm (cont.)

- Agglomeration and mapping
 - Fixed number of tasks, each requiring same amount of computation
 - Regular communication among tasks
 - Strategy: Assign each process a contiguous group of rows









Complexity Analysis

- Algorithm has *p* iterations
- During each iteration a process multiplies

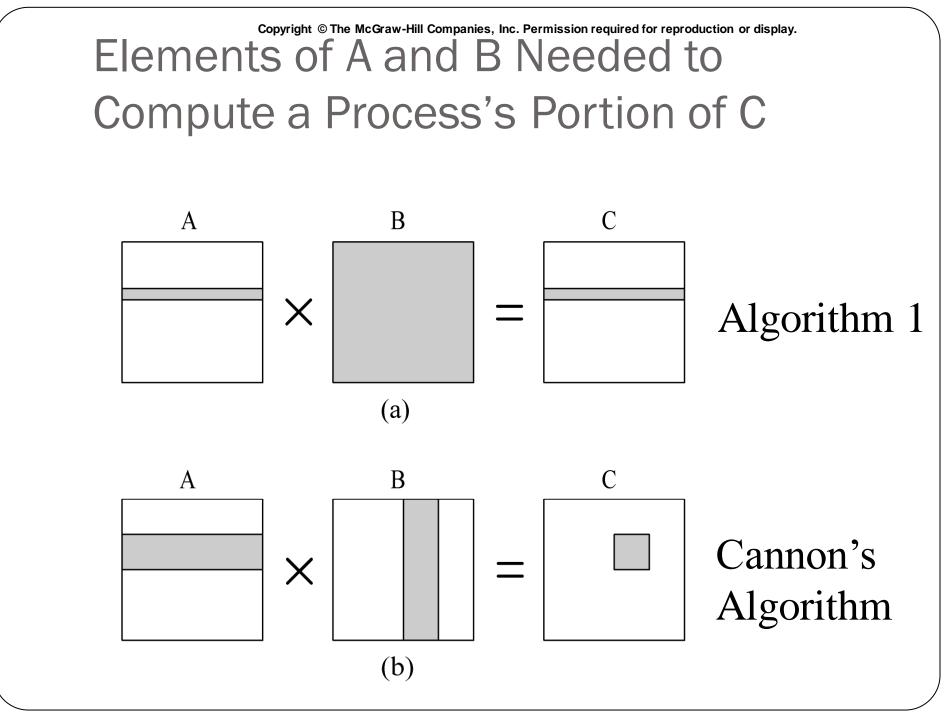
 (n / p) × (n / p) block of A by (n / p) × n block of B: Θ(n³ / p²)
- Total computation time: $\Theta(n^3 / p)$
- Each process ends up passing $(p-1)n^2/p = \Theta(n^2)$ elements of B

Weakness of Algorithm 1

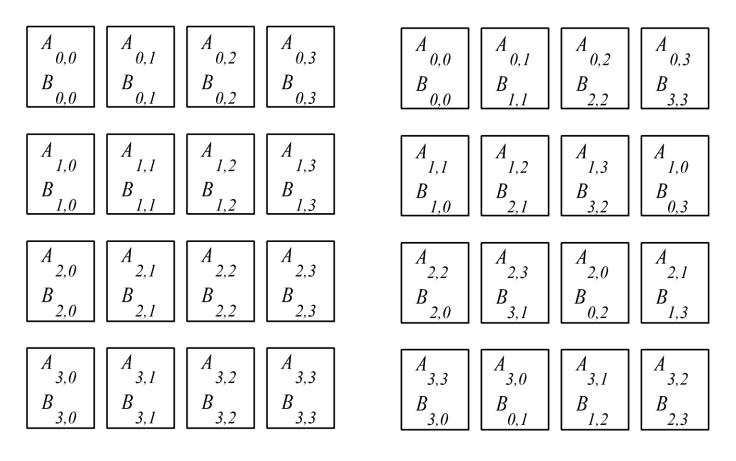
- Blocks of B being manipulated have p times more columns than rows
- Each process must access every element of matrix B
- Ratio of computations per communication is poor: only 2n /

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Parallel Algorithm 2 (Cannon's Algorithm)

- Associate a primitive task with each matrix element
- Agglomerate tasks responsible for a square (or nearly square) block of C
- Computation-to-communication ratio rises to n / \sqrt{p}



Blocks Must Be Aligned



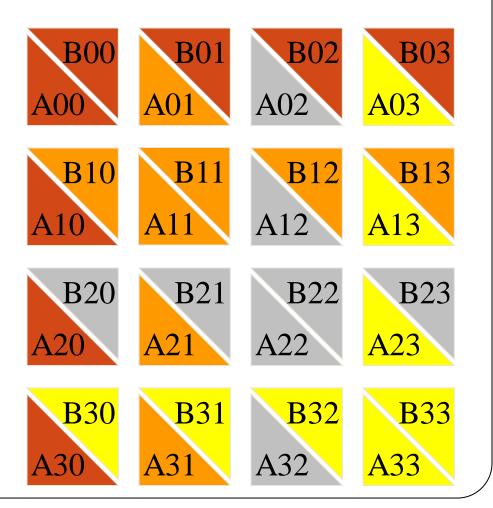
Before

After

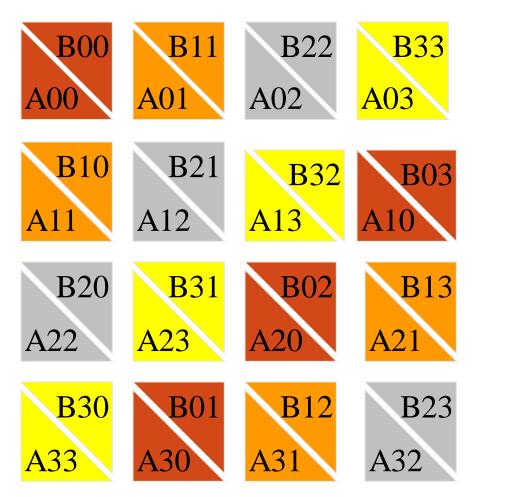
Blocks Need to Be Aligned

Each triangle represents a matrix block

Only same-color triangles should be multiplied

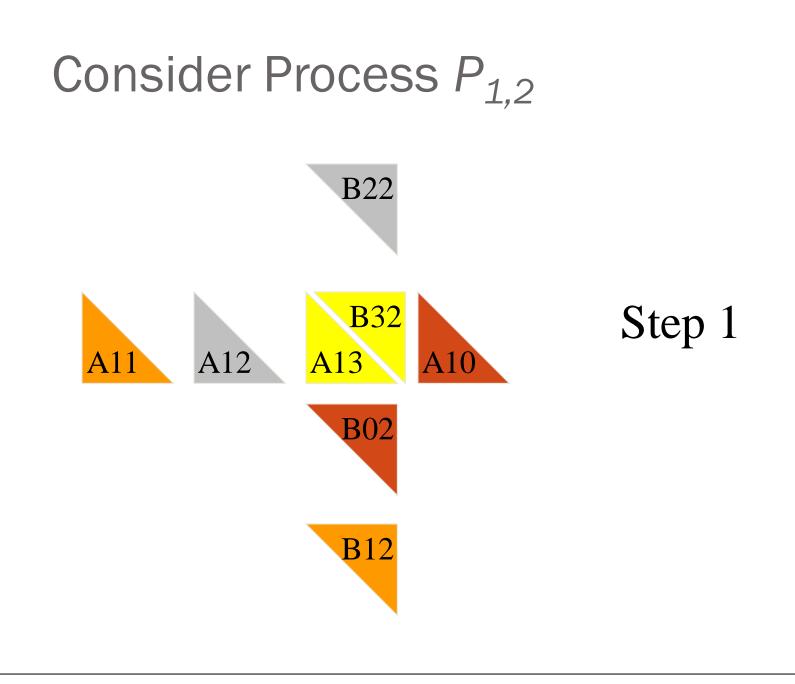


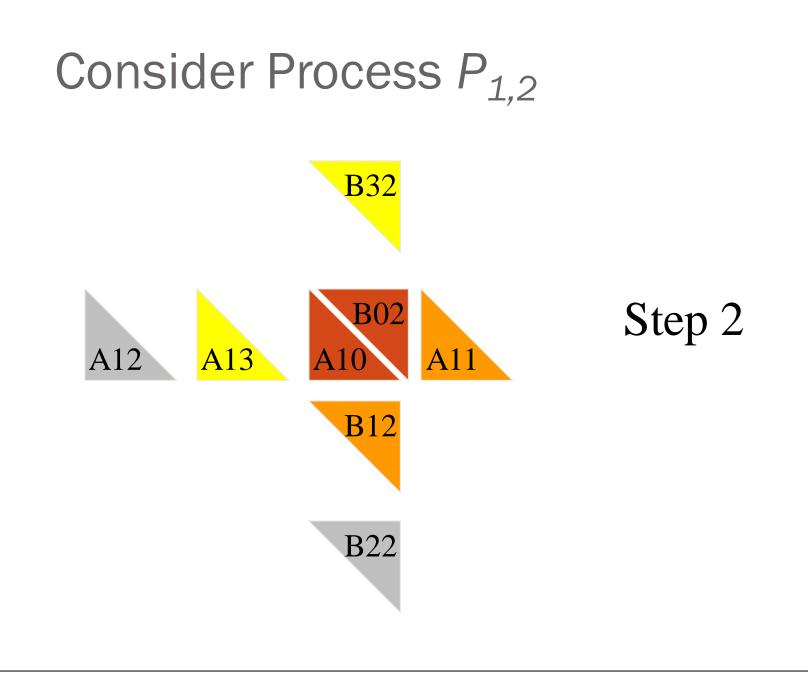
Rearrange Blocks

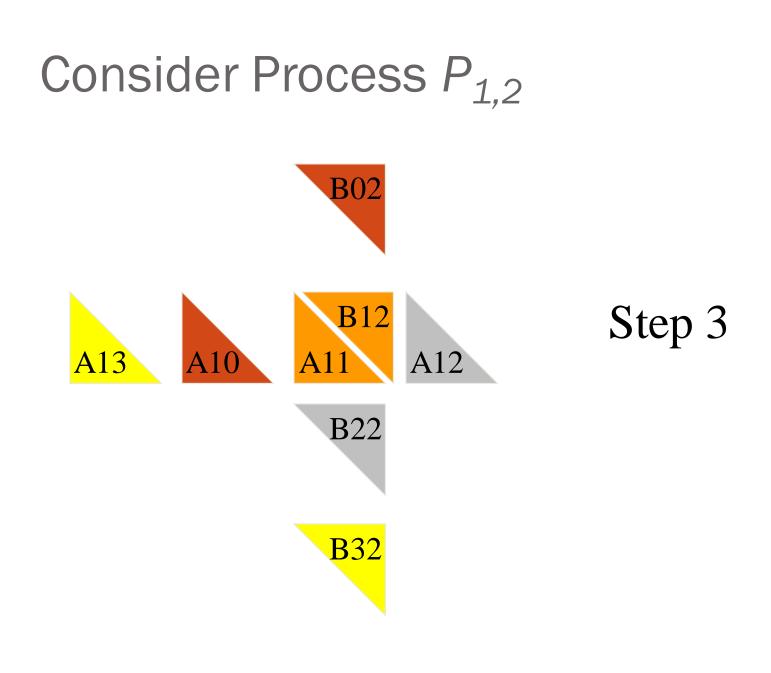


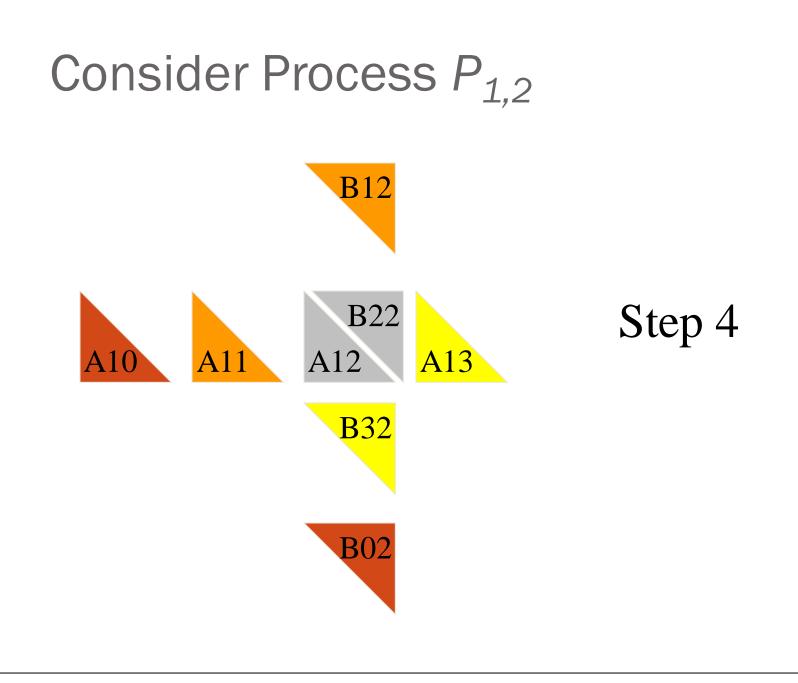
Block Aij cycles left i positions

Block Bij cycles up j positions









Complexity Analysis

- Algorithm has \sqrt{p} iterations
- During each iteration process multiplies two $(n / \sqrt{p}) \times (n / \sqrt{p})$ matrices: $\Theta(n^3 / p^{3/2})$
- Computational complexity: $\Theta(n^3 / p)$
- During each iteration process sends and receives two blocks of size (n / \sqrt{p}) × (n / \sqrt{p})
- Communication complexity: $\Theta(n^2/\sqrt{p})$

This system is highly scalable!

- Sequential algorithm: $\Theta(n^3)$
- Parallel overhead: $\Theta(\sqrt{pn^2})$