
Matrix-Vector Multiplication

Parallel and Distributed Computing

Department of Computer Science and Engineering (DEI)
Instituto Superior Técnico

November 13, 2012

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 1 / 37



Outline

Matrix-vector multiplication

rowwise decomposition

columnwise decomposition

checkerboard decomposition

Gather, scatter, alltoall

Grid-oriented communications

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 2 / 37



Matrix-Vector Multiplication

2 1 0 4

3 2 1 1

4 3 1 2

3 0 2 0

1

3

4

1

9

14

19

11

x =

A b c

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 3 / 37



Matrix-Vector Multiplication

2 1 0 4

3 2 1 1

4 3 1 2

3 0 2 0

1

3

4

1

9

14

19

11

x =

A b c

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 3 / 37



Matrix-Vector Multiplication

2 1 0 4

3 2 1 1

4 3 1 2

3 0 2 0

1

3

4

1

9

14

19

11

x =

A b c

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 3 / 37



Matrix-Vector Multiplication

2 1 0 4

3 2 1 1

4 3 1 2

3 0 2 0

1

3

4

1

9

14

19

11

x =

A b c

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 3 / 37



Matrix Decomposition

rowwise decomposition

columnwise decomposition

checkered-board decomposition

Storing vectors:

Divide vector elements among processes

Replicate vector elements

Vector replication acceptable because vectors have only n elements, versus
n2 elements in matrices.

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 4 / 37



Matrix Decomposition

rowwise decomposition

columnwise decomposition

checkered-board decomposition

Storing vectors:

Divide vector elements among processes

Replicate vector elements

Vector replication acceptable because vectors have only n elements, versus
n2 elements in matrices.

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 4 / 37



Matrix Decomposition

rowwise decomposition

columnwise decomposition

checkered-board decomposition

Storing vectors:

Divide vector elements among processes

Replicate vector elements

Vector replication acceptable because vectors have only n elements, versus
n2 elements in matrices.

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 4 / 37



Rowwise Decomposition

Task associated with

row of matrix

entire vector

x =

Row i of A

b c

x =

Row i of A

b

c i

AllGather

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 5 / 37



Rowwise Decomposition

Task associated with

row of matrix

entire vector

x =

Row i of A

b c

x =

Row i of A

b

c i

AllGather

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 5 / 37



Rowwise Decomposition

Task associated with

row of matrix

entire vector

x =

Row i of A

b c

x =

Row i of A

b

c i

AllGather

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 5 / 37



MPI Allgatherv

int MPI_Allgatherv (

void *send_buffer,

int send_cnt,

MPI_Datatype send_type,

void *receive_buffer,

int *receive_cnt,

int *receive_disp,

MPI_Datatype receive_type,

MPI_Comm communicator

)

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 6 / 37



MPI Allgatherv

c o n

3 4 4 0 3 7

send_buffer

receive_cnt receive_disp

send_cnt=3

Process 0

c a t

3 4 4 0 3 7

send_buffer

receive_cnt receive_disp

send_cnt=4

Process 1

n a t

3 4 4 0 3 7

send_buffer

receive_cnt receive_disp

send_cnt=4

Process 2

e

e

c o n c a t e n a t e

Process 0

receive_buffer

c o n c a t e n a t e

Process 1

receive_buffer

c o n c a t e n a t e

Process 2

receive_buffer

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 7 / 37



MPI Allgatherv

c o n

3 4 4 0 3 7

send_buffer

receive_cnt receive_disp

send_cnt=3

Process 0

c a t

3 4 4 0 3 7

send_buffer

receive_cnt receive_disp

send_cnt=4

Process 1

n a t

3 4 4 0 3 7

send_buffer

receive_cnt receive_disp

send_cnt=4

Process 2

e

e

c o n c a t e n a t e

Process 0

receive_buffer

c o n c a t e n a t e

Process 1

receive_buffer

c o n c a t e n a t e

Process 2

receive_buffer

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 7 / 37



Complexity Analysis

(for simplicity, assume square n × n matrix)

Sequential algorithm complexity:

Θ(n2)

Parallel algorithm computational complexity: Θ(n2/p)

Communication complexity of all-gather: Θ(log p + n)

Overall complexity: Θ(n2/p + log p + n)

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 8 / 37



Complexity Analysis

(for simplicity, assume square n × n matrix)

Sequential algorithm complexity: Θ(n2)

Parallel algorithm computational complexity:

Θ(n2/p)

Communication complexity of all-gather: Θ(log p + n)

Overall complexity: Θ(n2/p + log p + n)

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 8 / 37



Complexity Analysis

(for simplicity, assume square n × n matrix)

Sequential algorithm complexity: Θ(n2)

Parallel algorithm computational complexity: Θ(n2/p)

Communication complexity of all-gather:

Θ(log p + n)

Overall complexity: Θ(n2/p + log p + n)

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 8 / 37



Complexity Analysis

(for simplicity, assume square n × n matrix)

Sequential algorithm complexity: Θ(n2)

Parallel algorithm computational complexity: Θ(n2/p)

Communication complexity of all-gather: Θ(log p + n)

Overall complexity:

Θ(n2/p + log p + n)

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 8 / 37



Complexity Analysis

(for simplicity, assume square n × n matrix)

Sequential algorithm complexity: Θ(n2)

Parallel algorithm computational complexity: Θ(n2/p)

Communication complexity of all-gather: Θ(log p + n)

Overall complexity: Θ(n2/p + log p + n)

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 8 / 37



Algorithm Scalability

Isoefficiency analysis: T (n, 1) ≥ CT0(n, p)

Sequential time complexity: T (n, 1) = Θ(n2)

Parallel overhead is dominated by all-gather:

T0(n, p) = Θ(p(log p + n))
large n→ Θ(pn)

n2 ≥ Cpn ⇒ n ≥ Cp

Scalability function: M(f (p))/p

M(n) = n2 ⇒ M(Cp)

p
=

C 2p2

p
= C 2p

⇒ System is not highly scalable.

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 9 / 37



Algorithm Scalability

Isoefficiency analysis: T (n, 1) ≥ CT0(n, p)

Sequential time complexity: T (n, 1) = Θ(n2)

Parallel overhead is dominated by all-gather:

T0(n, p) = Θ(p(log p + n))
large n→ Θ(pn)

n2 ≥ Cpn ⇒ n ≥ Cp

Scalability function: M(f (p))/p

M(n) = n2 ⇒ M(Cp)

p
=

C 2p2

p
= C 2p

⇒ System is not highly scalable.

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 9 / 37



Algorithm Scalability

Isoefficiency analysis: T (n, 1) ≥ CT0(n, p)

Sequential time complexity: T (n, 1) = Θ(n2)

Parallel overhead is dominated by all-gather:

T0(n, p) = Θ(p(log p + n))
large n→ Θ(pn)

n2 ≥ Cpn ⇒ n ≥ Cp

Scalability function: M(f (p))/p

M(n) = n2 ⇒ M(Cp)

p
=

C 2p2

p
= C 2p

⇒ System is not highly scalable.

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 9 / 37



Algorithm Scalability

Isoefficiency analysis: T (n, 1) ≥ CT0(n, p)

Sequential time complexity: T (n, 1) = Θ(n2)

Parallel overhead is dominated by all-gather:

T0(n, p) = Θ(p(log p + n))
large n→ Θ(pn)

n2 ≥ Cpn ⇒ n ≥ Cp

Scalability function: M(f (p))/p

M(n) = n2 ⇒ M(Cp)

p
=

C 2p2

p
= C 2p

⇒ System is not highly scalable.

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 9 / 37



Analysis of the Parallel Algorithm

Let α be the time to compute an iteration.

Sequential execution time: αn2

Computation time of parallel program: αn
⌈
n
p

⌉
All-gather requires dlog pe messages with latency λ

Total vector elements transmitted: n

Total execution time:

αn

⌈
n

p

⌉
+ λdlog pe+

8n

β

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 10 / 37



Benchmarking

p Predicted Actual Speedup Mflops

1 63,4 63,4 1,00 31,6

2 32,4 32,7 1,94 61,2

3 22,3 22,7 2,79 88,1

4 17,0 17,8 3,56 112,4

5 14,1 15,2 4,16 131,6

6 12,0 13,3 4,76 150,4

7 10,5 12,2 5,19 163,9

8 9,4 11,1 5,70 180,2

16 5,7 7,2 8,79 277,8

(time in mili-seconds)

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 11 / 37



Columnwise Decomposition

Primitive task associated with

column of matrix

vector element

x =

b c

x =

Column i of A b c

Alltoall

Column i of A i

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 12 / 37



Columnwise Decomposition

Primitive task associated with

column of matrix

vector element

x =

b c

x =

Column i of A b c

Alltoall

Column i of A i

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 12 / 37



Columnwise Decomposition

Primitive task associated with

column of matrix

vector element

x =

b c

x =

Column i of A b c

Alltoall

Column i of A i

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 12 / 37



Columnwise Decomposition

Primitive task associated with

column of matrix

vector element

x =

b c

x =

Column i of A b c

Alltoall

Column i of A i

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 12 / 37



All-to-All Operation

P0 P1 P2 P3P0 P1 P2 P3

Alltoall

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 13 / 37



All-to-All Operation

P0 P1 P2 P3P0 P1 P2 P3

Alltoall

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 13 / 37



MPI Alltoallv

int MPI_Alltoallv (

void *send_buffer,

int *send_cnt,

int *send_disp,

MPI_Datatype send_type,

void *receive_buffer,

int *receive_cnt,

int *receive_disp,

MPI_Datatype receive_type,

MPI_Comm communicator

)

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 14 / 37



Complexity Analysis

(for simplicity, assume square n × n matrix)

Sequential algorithm complexity:

Θ(n2)

Parallel algorithm computational complexity: Θ(n2/p)

Communication complexity of alltoall: Θ(p + n)
(p − 1 messages, and a total of n elements)

Overall complexity: Θ(n2/p + n + p)

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 15 / 37



Complexity Analysis

(for simplicity, assume square n × n matrix)

Sequential algorithm complexity: Θ(n2)

Parallel algorithm computational complexity:

Θ(n2/p)

Communication complexity of alltoall: Θ(p + n)
(p − 1 messages, and a total of n elements)

Overall complexity: Θ(n2/p + n + p)

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 15 / 37



Complexity Analysis

(for simplicity, assume square n × n matrix)

Sequential algorithm complexity: Θ(n2)

Parallel algorithm computational complexity: Θ(n2/p)

Communication complexity of alltoall:

Θ(p + n)
(p − 1 messages, and a total of n elements)

Overall complexity: Θ(n2/p + n + p)

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 15 / 37



Complexity Analysis

(for simplicity, assume square n × n matrix)

Sequential algorithm complexity: Θ(n2)

Parallel algorithm computational complexity: Θ(n2/p)

Communication complexity of alltoall: Θ(p + n)
(p − 1 messages, and a total of n elements)

Overall complexity:

Θ(n2/p + n + p)

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 15 / 37



Complexity Analysis

(for simplicity, assume square n × n matrix)

Sequential algorithm complexity: Θ(n2)

Parallel algorithm computational complexity: Θ(n2/p)

Communication complexity of alltoall: Θ(p + n)
(p − 1 messages, and a total of n elements)

Overall complexity: Θ(n2/p + n + p)

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 15 / 37



Algorithm Scalability

Isoefficiency analysis: T (n, 1) ≥ CT0(n, p)

Sequential time complexity: T (n, 1) = Θ(n2)

The parallel overhead is alltoall and vector copying:

T0(n, p) = Θ(p(p + n))
large n→ Θ(pn))

n2 ≥ Cpn⇒ n ≥ Cp

Scalability function: M(f (p))/p

M(n) = n2 ⇒ M(Cp)

p
=

C 2p2

p
= C 2p

⇒ System is not highly scalable.

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 16 / 37



Algorithm Scalability

Isoefficiency analysis: T (n, 1) ≥ CT0(n, p)

Sequential time complexity: T (n, 1) = Θ(n2)

The parallel overhead is alltoall and vector copying:

T0(n, p) = Θ(p(p + n))
large n→ Θ(pn))

n2 ≥ Cpn⇒ n ≥ Cp

Scalability function: M(f (p))/p

M(n) = n2 ⇒ M(Cp)

p
=

C 2p2

p
= C 2p

⇒ System is not highly scalable.

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 16 / 37



Algorithm Scalability

Isoefficiency analysis: T (n, 1) ≥ CT0(n, p)

Sequential time complexity: T (n, 1) = Θ(n2)

The parallel overhead is alltoall and vector copying:

T0(n, p) = Θ(p(p + n))
large n→ Θ(pn))

n2 ≥ Cpn⇒ n ≥ Cp

Scalability function: M(f (p))/p

M(n) = n2 ⇒ M(Cp)

p
=

C 2p2

p
= C 2p

⇒ System is not highly scalable.

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 16 / 37



Algorithm Scalability

Isoefficiency analysis: T (n, 1) ≥ CT0(n, p)

Sequential time complexity: T (n, 1) = Θ(n2)

The parallel overhead is alltoall and vector copying:

T0(n, p) = Θ(p(p + n))
large n→ Θ(pn))

n2 ≥ Cpn⇒ n ≥ Cp

Scalability function: M(f (p))/p

M(n) = n2 ⇒ M(Cp)

p
=

C 2p2

p
= C 2p

⇒ System is not highly scalable.

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 16 / 37



Analysis of the Parallel Algorithm

Let α be the time to compute an iteration.

Sequential execution time: αn2

Computation time of parallel program: αn
⌈
n
p

⌉
Alltoall requires p − 1 messages each of length at most n/p (8 bytes per element
double).

Total execution time:

αn

⌈
n

p

⌉
+ (p − 1)

(
λ+

8n

pβ

)

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 17 / 37



Benchmarking

p Predicted Actual Speedup Mflops

1 63,4 63,8 1,00 31,4

2 32,4 32,9 1,92 60,8

3 22,2 22,6 2,80 88,5

4 17,2 17,5 3,62 114,3

5 14,3 14,5 4,37 137,9

6 12,5 12,6 5,02 158,7

7 11,3 11,2 5,65 178,6

8 10,4 10,0 6,33 200,0

16 8,5 7,6 8,33 263,2

(time in mili-seconds)

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 18 / 37



Checkerboard Decomposition

Primitive task associated with

rectangular blocks of matrix (processes form a 2D grid)

vector

distributed by blocks among processes in first row of grid

each block copied to processes in the same column of grid

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 19 / 37



Algorithm Steps

P0 P1

P2 P3

P4 P5

Distribute b Multiply

P0 P1

P2 P3

P4 P5

Reduce
across rows

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 20 / 37



Algorithm Steps

P0 P1

P2 P3

P4 P5

Distribute b Multiply

P0 P1

P2 P3

P4 P5

Reduce
across rows

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 20 / 37



Algorithm Steps

P0 P1

P2 P3

P4 P5

Distribute b Multiply

P0 P1

P2 P3

P4 P5

Reduce
across rows

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 20 / 37



Algorithm Steps

P0 P1

P2 P3

P4 P5

Distribute b Multiply

P0 P1

P2 P3

P4 P5

Reduce
across rows

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 20 / 37



Complexity Analysis

(for simplicity, assume square n × n matrix)

Also, assume p is a square number: grid has size n/
√
p.

Sequential algorithm complexity:

Θ(n2)

Parallel algorithm computational complexity: Θ(n2/p)
(each process computes a submatrix n/

√
p × n/

√
p)

Communication complexity of reduce: Θ(log
√
p (n/

√
p)) = Θ(n log p/

√
p)

(log
√
p messages, each with n/

√
p elements)

Overall complexity: Θ(n2/p + n log p/
√
p)

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 21 / 37



Complexity Analysis

(for simplicity, assume square n × n matrix)

Also, assume p is a square number: grid has size n/
√
p.

Sequential algorithm complexity: Θ(n2)

Parallel algorithm computational complexity:

Θ(n2/p)
(each process computes a submatrix n/

√
p × n/

√
p)

Communication complexity of reduce: Θ(log
√
p (n/

√
p)) = Θ(n log p/

√
p)

(log
√
p messages, each with n/

√
p elements)

Overall complexity: Θ(n2/p + n log p/
√
p)

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 21 / 37



Complexity Analysis

(for simplicity, assume square n × n matrix)

Also, assume p is a square number: grid has size n/
√
p.

Sequential algorithm complexity: Θ(n2)

Parallel algorithm computational complexity: Θ(n2/p)
(each process computes a submatrix n/

√
p × n/

√
p)

Communication complexity of reduce:

Θ(log
√
p (n/

√
p)) = Θ(n log p/

√
p)

(log
√
p messages, each with n/

√
p elements)

Overall complexity: Θ(n2/p + n log p/
√
p)

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 21 / 37



Complexity Analysis

(for simplicity, assume square n × n matrix)

Also, assume p is a square number: grid has size n/
√
p.

Sequential algorithm complexity: Θ(n2)

Parallel algorithm computational complexity: Θ(n2/p)
(each process computes a submatrix n/

√
p × n/

√
p)

Communication complexity of reduce: Θ(log
√
p (n/

√
p)) = Θ(n log p/

√
p)

(log
√
p messages, each with n/

√
p elements)

Overall complexity:

Θ(n2/p + n log p/
√
p)

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 21 / 37



Complexity Analysis

(for simplicity, assume square n × n matrix)

Also, assume p is a square number: grid has size n/
√
p.

Sequential algorithm complexity: Θ(n2)

Parallel algorithm computational complexity: Θ(n2/p)
(each process computes a submatrix n/

√
p × n/

√
p)

Communication complexity of reduce: Θ(log
√
p (n/

√
p)) = Θ(n log p/

√
p)

(log
√
p messages, each with n/

√
p elements)

Overall complexity: Θ(n2/p + n log p/
√
p)

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 21 / 37



Algorithm Scalability

Isoefficiency analysis: T (n, 1) ≥ CT0(n, p)

Sequential time complexity: T (n, 1) = Θ(n2)

The parallel overhead is reduce and vector copying:
T0(n, p) = Θ(pn log p/

√
p) = Θ(n

√
p log p)

n2 ≥ Cn
√
p log p ⇒ n ≥ C

√
p log p

Scalability function: M(f (p))/p

M(n) = n2 ⇒
M(C

√
p log p)

p
=

C 2p log2 p

p
= C 2 log2 p

⇒ This system is much more scalable than the previous two
implementations!

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 22 / 37



Algorithm Scalability

Isoefficiency analysis: T (n, 1) ≥ CT0(n, p)

Sequential time complexity: T (n, 1) = Θ(n2)

The parallel overhead is reduce and vector copying:
T0(n, p) = Θ(pn log p/

√
p) = Θ(n

√
p log p)

n2 ≥ Cn
√
p log p ⇒ n ≥ C

√
p log p

Scalability function: M(f (p))/p

M(n) = n2 ⇒
M(C

√
p log p)

p
=

C 2p log2 p

p
= C 2 log2 p

⇒ This system is much more scalable than the previous two
implementations!

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 22 / 37



Algorithm Scalability

Isoefficiency analysis: T (n, 1) ≥ CT0(n, p)

Sequential time complexity: T (n, 1) = Θ(n2)

The parallel overhead is reduce and vector copying:
T0(n, p) = Θ(pn log p/

√
p) = Θ(n

√
p log p)

n2 ≥ Cn
√
p log p ⇒ n ≥ C

√
p log p

Scalability function: M(f (p))/p

M(n) = n2 ⇒
M(C

√
p log p)

p
=

C 2p log2 p

p
= C 2 log2 p

⇒ This system is much more scalable than the previous two
implementations!

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 22 / 37



Algorithm Scalability

Isoefficiency analysis: T (n, 1) ≥ CT0(n, p)

Sequential time complexity: T (n, 1) = Θ(n2)

The parallel overhead is reduce and vector copying:
T0(n, p) = Θ(pn log p/

√
p) = Θ(n

√
p log p)

n2 ≥ Cn
√
p log p ⇒ n ≥ C

√
p log p

Scalability function: M(f (p))/p

M(n) = n2 ⇒
M(C

√
p log p)

p
=

C 2p log2 p

p
= C 2 log2 p

⇒ This system is much more scalable than the previous two
implementations!

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 22 / 37



Creating Communicators

collective communications involve all processes in a communicator

need reductions among subsets of processes

processes in a virtual 2-D grid

create communicators for processes in same row or same column

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 23 / 37



Creating Communicators

collective communications involve all processes in a communicator

need reductions among subsets of processes

processes in a virtual 2-D grid

create communicators for processes in same row or same column

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 23 / 37



Creating Communicators

collective communications involve all processes in a communicator

need reductions among subsets of processes

processes in a virtual 2-D grid

create communicators for processes in same row or same column

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 23 / 37



Creating Communicators

collective communications involve all processes in a communicator

need reductions among subsets of processes

processes in a virtual 2-D grid

create communicators for processes in same row or same column

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 23 / 37



Creating a Virtual Grid of Processes

MPI Dims create()

input parameters:

total number of processes in desired grid

number of grid dimensions

⇒ Returns number of processes in each dimension

MPI Cart create()

Creates communicator with Cartesian topology

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 24 / 37



MPI Dims create

int MPI_Dims_create (

int nodes, /* In - # procs in grid */

int dims, /* In - Number of dims */

int *size /* I/O- Size of each grid dim */

)

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 25 / 37



MPI Cart create

int MPI_Cart_create (

MPI_Comm old_comm, /* In - old communicator */

int dims, /* In - grid dimensions */

int *size, /* In - # procs in each dim */

int *periodic, /* In - 1 if dim i wraps around;

0 otherwise */

int reorder, /* In - 1 if process ranks

can be reordered */

MPI_Comm *cart_comm /* Out - new communicator */

)

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 26 / 37



Using MPI Dims create and MPI Cart create

MPI_Comm cart_comm;

int p;

int periodic[2];

int size[2];

...

size[0] = size[1] = 0;

MPI_Dims_create (p, 2, size);

periodic[0] = periodic[1] = 0;

MPI_Cart_create (MPI_COMM_WORLD, 2, size, periodic, 1,

&cart_comm);

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 27 / 37



Useful Grid-related Functions

MPI Cart rank()

given coordinates of a process in Cartesian communicator, returns process’
rank

int MPI_Cart_rank (

MPI_Comm comm, /* In - Communicator */

int *coords, /* In - Array containing

process’ grid location */

int *rank /* Out - Rank of process at coordinates */

)

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 28 / 37



Useful Grid-related Functions

MPI Cart coords()

given rank of a process in Cartesian communicator, returns process’
coordinates

int MPI_Cart_coords (

MPI_Comm comm, /* In - Communicator */

int rank, /* In - Rank of process */

int dims, /* In - Dimensions in virtual grid */

int *coords /* Out - Coordinates of specified

process in virtual grid */

)

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 29 / 37



MPI Comm split

MPI Comm split()

partitions the processes of a communicator into one or more
subgroups

constructs a communicator for each subgroup

allows processes in each subgroup to perform their own collective
communications

needed for columnwise scatter and rowwise reduce

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 30 / 37



MPI Comm split

int MPI_Comm_split (

MPI_Comm old_comm, /* In - Existing communicator */

int partition, /* In - Partition number */

int new_rank, /* In - Ranking order of processes

in new communicator */

MPI_Comm *new_comm /* Out - New communicator shared by

processes in same partition */

)

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 31 / 37



Example: Create Communicators for Process Rows

MPI_Comm grid_comm; /* 2-D process grid */

int grid_coords[2]; /* Location of process in grid */

MPI_Comm row_comm; /* Processes in same row */

MPI_Comm_split (grid_comm, grid_coords[0], grid_coords[1],

&row_comm);

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 32 / 37



Analysis of the Parallel Algorithm

Let α be the time to compute an iteration.

Sequential execution time: αn2

Computation time of parallel program: α
⌈

n√
p

⌉ ⌈
n√
p

⌉
Reduce requires log

√
p messages each of length λ+ 8

⌈
n√
p

⌉
/β (8 bytes per

element double).

Total execution time:

α

⌈
n
√
p

⌉⌈
n
√
p

⌉
+ log

√
p

(
λ+

8

β

⌈
n
√
p

⌉)

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 33 / 37



Benchmarking

p Predicted Actual Speedup Mflops

1 63,4 63,4 1,00 31,6

4 17,8 17,4 3,64 114,9

8 9,7 9,7 6,53 206,2

16 6,2 6,2 10,21 322,6

(time in mili-seconds)

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 34 / 37



Comparison of the Three Algorithms

Rowwise: αn

⌈
n

p

⌉
+ λdlog pe+

8n

β

Columnwise: αn

⌈
n

p

⌉
+ (p − 1)

(
λ+

8n

pβ

)
Checkerboard: α

⌈
n
√
p

⌉⌈
n
√
p

⌉
+ log p

(
λ+

8

β

⌈
n
√
p

⌉)

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 35 / 37



Review

Matrix-vector multiplication

rowwise decomposition

columnwise decomposition

checkerboard decomposition

Gather, scatter, alltoall

Grid-oriented communications

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 36 / 37



Next Class

load balancing

termination detection

CPD (DEI / IST) Parallel and Distributed Computing – 16 2012-11-13 37 / 37


	Matrix-Vector Multiplication
	Rowwise Decomposition
	Columnwise Decomposition
	Checkerboard Decomposition

