Matrix-Vector Multiplication

Parallel and Distributed Computing

Department of Computer Science and Engineering (DEI)
Instituto Superior Técnico

November 13, 2012

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13

Outline

@ Matrix-vector multiplication

e rowwise decomposition

e columnwise decomposition

o checkerboard decomposition

@ Gather, scatter, alltoall

@ Grid-oriented communications

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13

Matrix-Vector Multiplication

14

19

11

2012-11-13 3/37

CPD (DEI / IST) Parallel and Distributed Computing — 16

Matrix-Vector Multiplication

211101} 4 9

X =
41 3| 1] 2 4 19
3/0]2|0 1 11
A b C

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13 3/37

Matrix-Vector Multiplication

211101} 4 9

3121 1 3 14
X =

4 3 1 F2 4 19

3/0]2|0 1 11

A b C

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13 3/37

Matrix-Vector Multiplication

211101} 4 9

3121 1 3 14
X =

41 3| 1] 2 4 19

3 0 270 1 11

A b C

3/37

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13

Matrix Decomposition

@ rowwise decomposition
@ columnwise decomposition

@ checkered-board decomposition

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13 4 /37

Matrix Decomposition

@ rowwise decomposition
@ columnwise decomposition

@ checkered-board decomposition

Storing vectors:

@ Divide vector elements among processes

@ Replicate vector elements

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13

Matrix Decomposition

@ rowwise decomposition
@ columnwise decomposition

@ checkered-board decomposition

Storing vectors:
@ Divide vector elements among processes

@ Replicate vector elements

Vector replication acceptable because vectors have only n elements, versus
n? elements in matrices.

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13 4 /37

Rowwise Decomposition

Task associated with

@ row of matrix

@ entire vector

LD,

Row i of A

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13 5/37

Rowwise Decomposition

Task associated with

@ row of matrix

@ entire vector

HEEENERE

Row i of A c

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13 5/37

Rowwise Decomposition

Task associated with

@ row of matrix

@ entire vector

HEEENERE

Row i of A c Row i of A

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13 5/37

MPI_Allgatherv

int MPI_Allgatherv (

void *send_buffer,
int send_cnt,
MPI_Datatype send_type,
void *receive_buffer,
int *receive_cnt,
int *receive_disp,

MPI_Datatype receive_type,

MPI_Comm

CPD (DEI / IST)

communicator

Parallel and Distributed Computing — 16

2012-11-13

MPI_Allgatherv

Process 0
send_buffer

send_cnt=3
receive_cnt receive_disp
[3][a]a] [o]s]7]
Process 1

send_buffer

BN

receive_cnt receive_disp
(slefe] [ofs]7]
Process 2

send_buffer

ATl o] s

receive_cn receive_disp

344‘03

d

Parallel and Distributed Computing — 16

MPI_Allgatherv

Process 0

send_buffer Process 0

send_cnt=3 receive_buffer
receive_cnt receive_disp c o ‘ n ‘ ¢ ‘ a ‘ t ‘ e ‘ n ‘ a ‘ t ‘ e ‘
[3][a]a] [o]s]7]
Process 1

send_buffer Process 1

Hu send_cnt=4 ‘receivefbuffer

c o‘n‘c‘a‘t‘e‘n‘a‘t‘e‘

receive_cnt receive_disp
(slefe] [ofs]7]
Process 2

Process 2
send_buffer

nuu send_ont=4 receive_buffer

receive_cn receive_disp

‘344‘037‘

CPD (DEI / IST Parallel and Distributed Computing — 16

Complexity Analysis

(for simplicity, assume square n X n matrix)

Sequential algorithm complexity:

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13 8 /37

Complexity Analysis

(for simplicity, assume square n X n matrix)

Sequential algorithm complexity: ©(n?)

Parallel algorithm computational complexity:

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13 8 /37

Complexity Analysis

(for simplicity, assume square n X n matrix)

Sequential algorithm complexity: ©(n?)
Parallel algorithm computational complexity: ©(n?/p)

Communication complexity of all-gather:

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13 8 /37

Complexity Analysis

(for simplicity, assume square n X n matrix)

Sequential algorithm complexity: ©(n?)
Parallel algorithm computational complexity: ©(n?/p)
Communication complexity of all-gather: ©(log p + n)

Overall complexity:

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13 8 /37

Complexity Analysis

(for simplicity, assume square n X n matrix)

Sequential algorithm complexity: ©(n?)
Parallel algorithm computational complexity: ©(n?/p)
Communication complexity of all-gather: ©(log p + n)

Overall complexity: ©(n?/p + log p + n)

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13 8 /37

Algorithm Scalability

Isoefficiency analysis: T(n,1) > CTo(n, p)

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13 9 /37

Algorithm Scalability

Isoefficiency analysis: T(n,1) > CTo(n, p)
Sequential time complexity: T(n,1) = ©(n?)

Parallel overhead is dominated by all-gather:
1
To(n, p) = ©(p(log p + n)) =" ©(pn)

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13 9 /37

Algorithm Scalability

Isoefficiency analysis: T(n,1) > CTo(n, p)
Sequential time complexity: T(n,1) = ©(n?)

Parallel overhead is dominated by all-gather:
1
To(n, p) = ©(p(log p + n)) =" ©(pn)

n>Cpn = n>Cp

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13 9 /37

Algorithm Scalability

Isoefficiency analysis: T(n,1) > CTo(n, p)
Sequential time complexity: T(n,1) = ©(n?)
Parallel overhead is dominated by all-gather:

To(n, p) = ©(p(log p + n)) % " ©(pn)

n>Cpn = n>Cp

Scalability function: M(f(p))/p

2,2
M(n) =n* = M(Cp):Cp =C?%
p p

=- System is not highly scalable.

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13 9 /37

Analysis of the Parallel Algorithm

Let o be the time to compute an iteration.

Sequential execution time: an?

Computation time of parallel program: an H—‘

All-gather requires [log p] messages with latency A
Total vector elements transmitted: n

Total execution time:

an [;—‘ + Alog p] +%7

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13

Benchmarking

’ p H Predicted ‘ Actual ‘ Speedup ‘ Mflops ‘
1 63,4 63,4 1,00 31,6
2 32,4 32,7 1,94 61,2
3 22,3 22,7 2,79 88,1
4 17,0 17,8 3,56 | 112,4
5 14,1 15,2 416 | 131,6
6 12,0 13,3 476 | 1504
7 10,5 12,2 519 | 163,9
8 9,4 11,1 570 | 180,2
16 57 7.2 8,79 | 2778

(time in mili-seconds)

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13 11 /37

Columnwise Decomposition

Primitive task associated with

@ column of matrix

@ vector element

Columnii of A b

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13 12 / 37

Columnwise Decomposition

Primitive task associated with

@ column of matrix

@ vector element

Columnii of A b c

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13 12 / 37

Columnwise Decomposition

Primitive task associated with

@ column of matrix

@ vector element

=1

Columnii of A Columni of A b c,

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13 12 / 37

Columnwise Decomposition

Primitive task associated with

@ column of matrix

@ vector element

11

Columnii of A Columni of A b c,

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13 12 / 37

All-to-All Operation

PO P1 P2 P3

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13 13 / 37

All-to-All Operation

PO P1 P2 P3 PO P1 P2

P3

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13 13 / 37

MPI_Alltoallv

int MPI_Alltoallv (

void *send_buffer,
int *send_cnt,

int *send_disp,
MPI_Datatype send_type,
void *receive_buffer,
int *receive_cnt,
int *receive_disp,
MPI_Datatype receive_type,
MPI_Comm communicator

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13

Complexity Analysis

(for simplicity, assume square n X n matrix)

Sequential algorithm complexity:

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13 15 / 37

Complexity Analysis

(for simplicity, assume square n X n matrix)

Sequential algorithm complexity: ©(n?)

Parallel algorithm computational complexity:

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13 15 / 37

Complexity Analysis

(for simplicity, assume square n X n matrix)

Sequential algorithm complexity: ©(n?)
Parallel algorithm computational complexity: ©(n?/p)

Communication complexity of alltoall:

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13 15 /

Complexity Analysis

(for simplicity, assume square n X n matrix)

Sequential algorithm complexity: ©(n?)
Parallel algorithm computational complexity: ©(n?/p)

Communication complexity of alltoall: ©(p + n)
(p — 1 messages, and a total of n elements)

Overall complexity:

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13 15 /

Complexity Analysis

(for simplicity, assume square n X n matrix)

Sequential algorithm complexity: ©(n?)
Parallel algorithm computational complexity: ©(n?/p)

Communication complexity of alltoall: ©(p + n)
(p — 1 messages, and a total of n elements)

Overall complexity: ©(n?/p + n+ p)

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13 15 / 37

Algorithm Scalability

Isoefficiency analysis: T(n,1) > CTo(n, p)

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13 16 / 37

Algorithm Scalability

Isoefficiency analysis: T(n,1) > CTo(n, p)
Sequential time complexity: T(n,1) = ©(n?)

The parallel overhead is alltoall and vector copying:
1
To(n,p) = ©(p(p + n)) "= " (pn))

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13 16 / 37

Algorithm Scalability

Isoefficiency analysis: T(n,1) > CTo(n, p)
Sequential time complexity: T(n,1) = ©(n?)

The parallel overhead is alltoall and vector copying:
1
To(n,p) = ©(p(p + n)) "= " (pn))

n?>> Cpn=n>Cp

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13

Algorithm Scalability

Isoefficiency analysis: T(n,1) > CTo(n, p)
Sequential time complexity: T(n,1) = ©(n?)
The parallel overhead is alltoall and vector copying:

To(n, p) = ©(p(p + n)) & " ©(pn))

n?>> Cpn=n>Cp

Scalability function: M(f(p))/p

2,2
M(n) =n* = M(Cp):Cp =C?%
p p

=- System is not highly scalable.

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13

Analysis of the Parallel Algorithm

Let o be the time to compute an iteration.

Sequential execution time: an?

Computation time of parallel program: an H—‘

Alltoall requires p — 1 messages each of length at most n/p (8 bytes per element
double).

Total execution time:

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13 17 / 37

Benchmarking

’ p H Predicted ‘ Actual ‘ Speedup ‘ Mflops ‘
1 63,4 63,8 1,00 31,4
2 32,4 32,9 1,92 60,8
3 22,2 22,6 2,80 88,5
4 17,2 17,5 3,62 | 1143
5 143 145 437 | 1379
6 12,5 12,6 502 | 158,7
7 11,3 11,2 565 | 178,6
8 10,4 10,0 6,33 | 200,0
16 8,5 7,6 8,33 | 263,2

(time in mili-seconds)

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13 18 / 37

Checkerboard Decomposition

Primitive task associated with

@ rectangular blocks of matrix (processes form a 2D grid)

@ vector
e distributed by blocks among processes in first row of grid

e each block copied to processes in the same column of grid

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13

Algorithm Steps

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13 20 / 37

Algorithm Steps

PO I
Distribute b
_—
P2

Pa I

P5

CPD (DEI Parallel and Distributed Computing — 16 2012-11-13 20 / 37

Algorithm Steps

PO I
Distribute b
_—
P2

Pa I

PO

:
=1
:

P1

P2 P3

P5 P4 P5

CPD (DEI Parallel and Distributed Computing — 16 2012-11-13 20 / 37

Algorithm Steps

PO I P1 PO P1
] Reduce
Distribute b [Muiply across rows
- N — _—
P2 P3 P2 P3
P4 I P5 P4 P5

Parallel and Distributed Computing — 16 2012-11-13 20 / 37

Complexity Analysis

(for simplicity, assume square n X n matrix)

Also, assume p is a square number: grid has size n/,/p.

Sequential algorithm complexity:

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13 21 /37

Complexity Analysis

(for simplicity, assume square n X n matrix)

Also, assume p is a square number: grid has size n/,/p.

Sequential algorithm complexity: ©(n?)

Parallel algorithm computational complexity:

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13

Complexity Analysis

(for simplicity, assume square n X n matrix)

Also, assume p is a square number: grid has size n/,/p.

Sequential algorithm complexity: ©(n?)

Parallel algorithm computational complexity: ©(n?/p)
(each process computes a submatrix n/\/p x n/\/p)

Communication complexity of reduce:

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13 21 /37

Complexity Analysis

(for simplicity, assume square n X n matrix)

Also, assume p is a square number: grid has size n/,/p.

Sequential algorithm complexity: ©(n?)

Parallel algorithm computational complexity: ©(n?/p)
(each process computes a submatrix n/\/p x n/\/p)

Communication complexity of reduce: ©(log./p (n/\/p)) = ©(nlogp/./p)
(log \/p messages, each with n/,/p elements)

Overall complexity:

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13 21 /37

Complexity Analysis

(for simplicity, assume square n X n matrix)

Also, assume p is a square number: grid has size n/,/p.

Sequential algorithm complexity: ©(n?)

Parallel algorithm computational complexity: ©(n?/p)
(each process computes a submatrix n/\/p x n/\/p)

Communication complexity of reduce: ©(log./p (n/\/p)) = ©(nlogp/./p)
(log \/p messages, each with n/,/p elements)

Overall complexity: ©(n?/p + nlog p/\/P)

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13 21 /37

Algorithm Scalability

Isoefficiency analysis: T(n,1) > CTo(n, p)

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13 22 /37

Algorithm Scalability

Isoefficiency analysis: T(n,1) > CTy(n, p)
Sequential time complexity: T(n,1) = ©(n?)

The parallel overhead is reduce and vector copying:

To(n, p) = ©(pnlogp/\/p) = ©(n\/plogp)

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13 22 /37

Algorithm Scalability

Isoefficiency analysis: T(n,1) > CTy(n, p)
Sequential time complexity: T(n,1) = ©(n?)

The parallel overhead is reduce and vector copying:

To(n, p) = ©(pnlogp/\/p) = ©(n\/plogp)

n® > Cny/plogp=n> C\/plogp

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13 22 /37

Algorithm Scalability

Isoefficiency analysis: T(n,1) > CTo(n, p)
Sequential time complexity: T(n,1) = ©(n?)
The parallel overhead is reduce and vector copying:
To(n, p) = ©(pnlogp/\/p) = ©(n\/plogp)
n>> Cny/plogp = n> C,/plogp
Scalability function: M(f(p))/p

M(Cy/plogp) _ C’plog’p
p

M(n) = n* =
(n) >

= C?%log?p

= This system is much more scalable than the previous two
implementations!

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13

Creating Communicators

@ collective communications involve all processes in a communicator

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13 23 /37

Creating Communicators

@ collective communications involve all processes in a communicator

@ need reductions among subsets of processes

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13 23 /37

Creating Communicators

@ collective communications involve all processes in a communicator

@ need reductions among subsets of processes

@ processes in a virtual 2-D grid

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13 23 /37

Creating Communicators

@ collective communications involve all processes in a communicator

@ need reductions among subsets of processes

@ processes in a virtual 2-D grid

@ create communicators for processes in same row or same column

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13

Creating a Virtual Grid of Processes

MPI Dims_create()

input parameters:

e total number of processes in desired grid

e number of grid dimensions

= Returns number of processes in each dimension

MPI_Cart_create()

Creates communicator with Cartesian topology

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13 24 / 37

MPI Dims_create

int MPI_Dims_create (

int nodes, /* In - # procs in grid */
int dims, /* In - Number of dims */
int *size /* 1/0- Size of each grid dim */

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13 25 /37

MPI _Cart_create

int MPI_Cart_create (
MPI_Comm old_comm, /*

int dims,
int *size,
int *periodic,

int reorder,

/*
/*
/*

/*

MPI_Comm *cart_comm /*

In
In
In
In

In

0ld communicator */
grid dimensions */

procs in each dim */

1 if dim i wraps around;
0 otherwise */

1 if process ranks

can be reordered */

Out - new communicator */

CPD (DEI / IST)

Parallel and Distributed Computing — 16 2012-11-13 26 / 37

Using MPI Dims create and MPI Cart create

MPI_Comm cart_comm;
int p;

int periodic[2];
int size[2];

size[0] = size[l1] = 0;

MPI_Dims_create (p, 2, size);

periodic[0] = periodic[1] = 0;

MPI_Cart_create (MPI_COMM_WORLD, 2, size, periodic, 1,
&cart_comm) ;

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13 27 /

Useful Grid-related Functions

MPI_Cart_rank()
given coordinates of a process in Cartesian communicator, returns process’
rank

int MPI_Cart_rank (
MPI_Comm comm, /* In - Communicator */

int *coords, /* In - Array containing
process’ grid location */
int *rank /* Out - Rank of process at coordinates */

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13 28 / 37

Useful Grid-related Functions

MPI_Cart_coords()

given rank of a process in Cartesian communicator, returns process’
coordinates

int MPI_Cart_coords (
MPI_Comm comm, /* In - Communicator */

int rank, /* In - Rank of process */
int dims, /* In - Dimensions in virtual grid */
int *coords /* Out - Coordinates of specified

process in virtual grid */

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13

MPI Co plit

MPI Comm_split()

@ partitions the processes of a communicator into one or more
subgroups

@ constructs a communicator for each subgroup

@ allows processes in each subgroup to perform their own collective
communications

@ needed for columnwise scatter and rowwise reduce

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13 30/ 37

MPI _Comm split

int MPI_Comm_split (
MPI_Comm old_comm, /* In - Existing communicator */
int partition, /* In - Partition number */
int new_rank, /* In - Ranking order of processes
in new communicator */
MPI_Comm *new_comm /* Out - New communicator shared by
processes in same partition */

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13 31 /37

Example: Create Communicators for Process Rows

MPI_Comm grid_comm; /* 2-D process grid */
int grid_coords[2]; /* Location of process in grid */
MPI_Comm row_comm; /* Processes in same row */

MPI_Comm_split (grid_comm, grid_coords[0], grid_coords[1],
&row_comm) ;

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13 32 /37

Analysis of the Parallel Algorithm

Let « be the time to compute an iteration.

Sequential execution time: an?

n

L) n
Computation time of parallel program: « [ﬁ—‘ [W—‘

Reduce requires log \/p messages each of length A + 8 { -‘ /3 (8 bytes per
element double).

Total execution time:

[l [Gal wes2 (451 51)

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13 33 /37

Benchmarking

’ p H Predicted ‘ Actual ‘ Speedup ‘ Mflops
1 63,4 63,4 1,00 31,6
4 17,8 17,4 3,64 | 1149
8 9,7 9,7 6,53 | 206,2
16 6,2 6,2 10,21 | 322,6

(time in mili-seconds)

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13 34 /37

Comparison of the Three Algorithms

Rowwise: an [Z—‘ + Allog p| + Sﬂn

Columnwise: an [Z—‘ +(p-1) <)\ n ig)

owssons o[2][2] s -3 [2])

Speedup

2012-11-13 35 /37

CPD (DEI / IST) Parallel and Distributed Computing — 16

Review

@ Matrix-vector multiplication

e rowwise decomposition

e columnwise decomposition

o checkerboard decomposition

@ Gather, scatter, alltoall

@ Grid-oriented communications

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13

Next Class

@ load balancing

@ termination detection

CPD (DEI / IST) Parallel and Distributed Computing — 16 2012-11-13 37 /37

	Matrix-Vector Multiplication
	Rowwise Decomposition
	Columnwise Decomposition
	Checkerboard Decomposition

