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Outline

Matrix-vector multiplication

rowwise decomposition

columnwise decomposition

checkerboard decomposition

Gather, scatter, alltoall

Grid-oriented communications
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Matrix-Vector Multiplication
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Matrix Decomposition

rowwise decomposition

columnwise decomposition

checkered-board decomposition

Storing vectors:

Divide vector elements among processes

Replicate vector elements

Vector replication acceptable because vectors have only n elements, versus
n2 elements in matrices.
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Rowwise Decomposition

Task associated with

row of matrix

entire vector

x =

Row i of A

b c

x =

Row i of A

b

c i

AllGather
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MPI Allgatherv

int MPI_Allgatherv (

void *send_buffer,

int send_cnt,

MPI_Datatype send_type,

void *receive_buffer,

int *receive_cnt,

int *receive_disp,

MPI_Datatype receive_type,

MPI_Comm communicator

)
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MPI Allgatherv
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Complexity Analysis

(for simplicity, assume square n × n matrix)

Sequential algorithm complexity:

Θ(n2)

Parallel algorithm computational complexity: Θ(n2/p)

Communication complexity of all-gather: Θ(log p + n)

Overall complexity: Θ(n2/p + log p + n)
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Algorithm Scalability

Isoefficiency analysis: T (n, 1) ≥ CT0(n, p)

Sequential time complexity: T (n, 1) = Θ(n2)

Parallel overhead is dominated by all-gather:

T0(n, p) = Θ(p(log p + n))
large n→ Θ(pn)

n2 ≥ Cpn ⇒ n ≥ Cp

Scalability function: M(f (p))/p

M(n) = n2 ⇒ M(Cp)

p
=

C 2p2

p
= C 2p

⇒ System is not highly scalable.
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Analysis of the Parallel Algorithm

Let α be the time to compute an iteration.

Sequential execution time: αn2

Computation time of parallel program: αn
⌈
n
p

⌉
All-gather requires dlog pe messages with latency λ

Total vector elements transmitted: n

Total execution time:

αn

⌈
n

p

⌉
+ λdlog pe+

8n

β
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Benchmarking

p Predicted Actual Speedup Mflops

1 63,4 63,4 1,00 31,6

2 32,4 32,7 1,94 61,2

3 22,3 22,7 2,79 88,1

4 17,0 17,8 3,56 112,4

5 14,1 15,2 4,16 131,6

6 12,0 13,3 4,76 150,4

7 10,5 12,2 5,19 163,9

8 9,4 11,1 5,70 180,2

16 5,7 7,2 8,79 277,8

(time in mili-seconds)
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Columnwise Decomposition

Primitive task associated with

column of matrix

vector element

x =

b c

x =

Column i of A b c

Alltoall

Column i of A i
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All-to-All Operation

P0 P1 P2 P3P0 P1 P2 P3

Alltoall
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MPI Alltoallv

int MPI_Alltoallv (

void *send_buffer,

int *send_cnt,

int *send_disp,

MPI_Datatype send_type,

void *receive_buffer,

int *receive_cnt,

int *receive_disp,

MPI_Datatype receive_type,

MPI_Comm communicator

)
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Complexity Analysis

(for simplicity, assume square n × n matrix)

Sequential algorithm complexity:

Θ(n2)

Parallel algorithm computational complexity: Θ(n2/p)

Communication complexity of alltoall: Θ(p + n)
(p − 1 messages, and a total of n elements)

Overall complexity: Θ(n2/p + n + p)
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Algorithm Scalability
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Scalability function: M(f (p))/p
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Analysis of the Parallel Algorithm

Let α be the time to compute an iteration.

Sequential execution time: αn2

Computation time of parallel program: αn
⌈
n
p

⌉
Alltoall requires p − 1 messages each of length at most n/p (8 bytes per element
double).

Total execution time:

αn

⌈
n

p

⌉
+ (p − 1)

(
λ+

8n

pβ

)
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Benchmarking

p Predicted Actual Speedup Mflops

1 63,4 63,8 1,00 31,4

2 32,4 32,9 1,92 60,8

3 22,2 22,6 2,80 88,5

4 17,2 17,5 3,62 114,3

5 14,3 14,5 4,37 137,9

6 12,5 12,6 5,02 158,7

7 11,3 11,2 5,65 178,6

8 10,4 10,0 6,33 200,0

16 8,5 7,6 8,33 263,2

(time in mili-seconds)
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Checkerboard Decomposition

Primitive task associated with

rectangular blocks of matrix (processes form a 2D grid)

vector

distributed by blocks among processes in first row of grid

each block copied to processes in the same column of grid
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Algorithm Steps

P0 P1

P2 P3

P4 P5

Distribute b Multiply

P0 P1

P2 P3

P4 P5

Reduce
across rows
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Complexity Analysis

(for simplicity, assume square n × n matrix)

Also, assume p is a square number: grid has size n/
√
p.

Sequential algorithm complexity:

Θ(n2)

Parallel algorithm computational complexity: Θ(n2/p)
(each process computes a submatrix n/

√
p × n/

√
p)

Communication complexity of reduce: Θ(log
√
p (n/

√
p)) = Θ(n log p/

√
p)

(log
√
p messages, each with n/

√
p elements)

Overall complexity: Θ(n2/p + n log p/
√
p)
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Algorithm Scalability

Isoefficiency analysis: T (n, 1) ≥ CT0(n, p)

Sequential time complexity: T (n, 1) = Θ(n2)

The parallel overhead is reduce and vector copying:
T0(n, p) = Θ(pn log p/

√
p) = Θ(n

√
p log p)

n2 ≥ Cn
√
p log p ⇒ n ≥ C

√
p log p

Scalability function: M(f (p))/p

M(n) = n2 ⇒
M(C

√
p log p)

p
=

C 2p log2 p

p
= C 2 log2 p

⇒ This system is much more scalable than the previous two
implementations!
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Creating Communicators

collective communications involve all processes in a communicator

need reductions among subsets of processes

processes in a virtual 2-D grid

create communicators for processes in same row or same column
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Creating a Virtual Grid of Processes

MPI Dims create()

input parameters:

total number of processes in desired grid

number of grid dimensions

⇒ Returns number of processes in each dimension

MPI Cart create()

Creates communicator with Cartesian topology
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MPI Dims create

int MPI_Dims_create (

int nodes, /* In - # procs in grid */

int dims, /* In - Number of dims */

int *size /* I/O- Size of each grid dim */

)
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MPI Cart create

int MPI_Cart_create (

MPI_Comm old_comm, /* In - old communicator */

int dims, /* In - grid dimensions */

int *size, /* In - # procs in each dim */

int *periodic, /* In - 1 if dim i wraps around;

0 otherwise */

int reorder, /* In - 1 if process ranks

can be reordered */

MPI_Comm *cart_comm /* Out - new communicator */

)
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Using MPI Dims create and MPI Cart create

MPI_Comm cart_comm;

int p;

int periodic[2];

int size[2];

...

size[0] = size[1] = 0;

MPI_Dims_create (p, 2, size);

periodic[0] = periodic[1] = 0;

MPI_Cart_create (MPI_COMM_WORLD, 2, size, periodic, 1,

&cart_comm);
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Useful Grid-related Functions

MPI Cart rank()

given coordinates of a process in Cartesian communicator, returns process’
rank

int MPI_Cart_rank (

MPI_Comm comm, /* In - Communicator */

int *coords, /* In - Array containing

process’ grid location */

int *rank /* Out - Rank of process at coordinates */

)
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Useful Grid-related Functions

MPI Cart coords()

given rank of a process in Cartesian communicator, returns process’
coordinates

int MPI_Cart_coords (

MPI_Comm comm, /* In - Communicator */

int rank, /* In - Rank of process */

int dims, /* In - Dimensions in virtual grid */

int *coords /* Out - Coordinates of specified

process in virtual grid */

)
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MPI Comm split

MPI Comm split()

partitions the processes of a communicator into one or more
subgroups

constructs a communicator for each subgroup

allows processes in each subgroup to perform their own collective
communications

needed for columnwise scatter and rowwise reduce
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MPI Comm split

int MPI_Comm_split (

MPI_Comm old_comm, /* In - Existing communicator */

int partition, /* In - Partition number */

int new_rank, /* In - Ranking order of processes

in new communicator */

MPI_Comm *new_comm /* Out - New communicator shared by

processes in same partition */

)
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Example: Create Communicators for Process Rows

MPI_Comm grid_comm; /* 2-D process grid */

int grid_coords[2]; /* Location of process in grid */

MPI_Comm row_comm; /* Processes in same row */

MPI_Comm_split (grid_comm, grid_coords[0], grid_coords[1],

&row_comm);
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Analysis of the Parallel Algorithm

Let α be the time to compute an iteration.

Sequential execution time: αn2

Computation time of parallel program: α
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Benchmarking

p Predicted Actual Speedup Mflops

1 63,4 63,4 1,00 31,6

4 17,8 17,4 3,64 114,9

8 9,7 9,7 6,53 206,2

16 6,2 6,2 10,21 322,6

(time in mili-seconds)
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Comparison of the Three Algorithms

Rowwise: αn
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Review

Matrix-vector multiplication

rowwise decomposition

columnwise decomposition

checkerboard decomposition

Gather, scatter, alltoall

Grid-oriented communications
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Next Class

load balancing

termination detection
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