
Parallel Computing

2012

Slides credit: M. Quinn book (chapter 3 slides), A Grama book (chapter 3 slides)

Parallel Algorithm Design

Outline

• Computational Model

• Design Methodology

– Partitioning

– Communication

– Agglomeration

– Mapping

• Example

Computational Model

Task: sequential program and its local storage

Parallel computation: two or more tasks executing

 concurrently

Communication channel: link between two tasks
over which messages can be sent and received
send is nonblocking : sending task resumes execution

immediately

receive is blocking : receiving task blocks execution until

requested message is available

Example: Laplace Equation in 1-D

Consider Laplace equation in 1-D

 u’’(t) = 0

 on interval a < t < b with BC

 u(a) = α , u(b) = β

Seek approximate solution values ui ≈ u(ti) at
mesh points

 ti = a + ih, i = 0, , n + 1, where

 h = (b-a)/(n + 1)

Example: Laplace Equation in 1-D

• Finite difference approximation

• yields tridiagonal system of algebraic equations

 for ui, i = 1, …., n, where u0 =α and un+1 = β

• Starting from initial guess u(0) , compute Jacobi iterates

 for k = 1,…. until convergence

Example: Laplace Equation in 1-D

• Define n tasks, one for each ui, i = 1 , . . . , n

• Task i stores initial value of ui and updates it at
each iteration until convergence

• To update ui, necessary values of ui-1 and ui+1
obtained from neighboring tasks i-1 and i+1

• Tasks 1 and n determine u0 and un+1 from BC

Example: Laplace Equation in 1-D

Mapping Tasks to Processors

• Tasks must be assigned to physical processors for
execution

• Tasks can be mapped to processors in various ways,
including multiple tasks per processor

• Semantics of program should not depend on number
of processors or particular mapping of tasks to
processors

• Performance usually sensitive to assignment of tasks to
processors due to concurrency, workload balance,
communication patterns, etc

• Computational model maps naturally onto distributed-
memory multicomputer using message passing

Other Models of Parallel Computation

• PRAM — Parallel Random Access Machine

• LogP — Latency/Overhead/Gap/Processors

• BSP — Bulk Synchronous Parallel

• CSP — Communicating Sequential Processes

• Linda — Tuple Space

• and many others

Refer: http://www.ida.liu.se/~chrke/papers/modelsurvey.pdf

Four-Step Design Methodology

• Partition : Decompose problem into fine-grain tasks,
maximizing number of tasks that can execute concurrently

• Communicate : Determine communication pattern among
fine-grain tasks, yielding task graph with fine-grain tasks as
nodes and communication channels as edges

• Agglomerate : Combine groups of fine-grain tasks to form
fewer but larger coarse-grain tasks, thereby reducing
communication requirements

• Map : Assign coarse-grain tasks to processors, subject to
tradeoffs between communication costs and concurrency

Four-Step Design Methodology

Graph Embeddings

• Target network may be virtual network topology, with
nodes usually called processes rather than processors

• Overall design methodology is composed of sequence
of graph embeddings:
– fine-grain task graph to coarse-grain task graph
– coarse-grain task graph to virtual network graph
– virtual network graph to physical network graph

• Depending on circumstances, one or more of these
embeddings may be skipped

• Target system may automatically map processes of
virtual network topology to processors of physical
network

Partitioning Strategies

• Domain decomposition : Divide data into pieces
– Determine how to associate computations with the data
– Focuses on the largest and most frequently accessed data structure

• Functional decomposition : Divide computation into pieces
– Determine how to associate data with the computations

• Independent tasks : subdivide computation into tasks that do not
depend on each other (embarrassingly parallel)

• Array parallelism : simultaneous operations on entries of vectors,
matrices, or other arrays

• Divide-and-conquer : recursively divide problem into tree-like
hierarchy of subproblems

• Pipelining : break problem into sequence of stages for each of
sequence of objects

Please post examples for each on piazza.

Example Domain Decompositions

Think of the primitive
tasks as processors.

In 1st, each 2D slice is
mapped onto one
processor of a system
using 3 processors.

In second, a 1D slice is
mapped onto a processor.

In last, an element is
mapped onto a processor

The last leaves more
primitive tasks and is
usually preferred.

Desirable Properties of Partitioning

• Maximum possible concurrency in executing
resulting tasks

• Many more tasks than processors

• Number of tasks, rather than size of each task,
grows as overall problem size increases

• Tasks reasonably uniform in size

• Redundant computation or storage avoided

Communication Patterns

• Communication pattern determined by data
dependences among tasks: because storage is
local to each task, any data stored or produced by
one task and needed by another must be
communicated between them

• Communication pattern may be
– local or global

– structured or random

– persistent or dynamically changing

– synchronous or sporadic

Desirable Properties of Communication

• Frequency and volume minimized

• Highly localized (between neighboring tasks)

• Reasonably uniform across channels

• Network resources used concurrently

• Does not inhibit concurrency of tasks

• Overlapped with computation as much as
possible

What We Have Hopefully at This Point – and
What We Don’t Have

• The first two steps look for parallelism in the problem.

• However, the design obtained at this point probably doesn’t
map well onto a real machine.

• If the number of tasks greatly exceed the number of
processors, the overhead will be strongly affected by how the
tasks are assigned to the processors.

• Now we have to decide what type of computer we are
targeting

– Is it a centralized multiprocessor or a multicomputer?

– What communication paths are supported

– How must we combine tasks in order to map them
effectively onto processors?

Agglomeration
• Agglomeration: Grouping tasks into larger tasks

• Goals

– Improve performance

– Maintain scalability of program

– Simplify programming – i.e. reduce software engineering
costs.

• In MPI programming, a goal is

– to lower communication overhead.

– often to create one agglomerated task per processor

• By agglomerating primitive tasks that communicate with each
other, communication is eliminated as the needed data is
local to a processor.

Agglomeration Can Improve Performance

• It can eliminate communication between primitive
tasks agglomerated into consolidated task

• It can combine groups of sending and receiving tasks

Scalability

• Assume we are manipulating a 3D matrix of size 8 x
128 x 256 and
– Our target machine is a centralized multiprocessor with 4

CPUs.

• Suppose we agglomerate the 2nd and 3rd dimensions.
Can we run on our target machine?
– Yes- because we can have tasks which are each responsible

for a 2 x 128 x 256 submatrix.

– Suppose we change to a target machine that is a
centralized multiprocessor with 8 CPUs. Could our previous
design basically work.

– Yes, because each task could handle a 1 x 128 x 256 matrix.

Scalability

– However, what if we go to more than 8 CPUs? Would our
design change if we had agglomerated the 2nd and 3rd
dimension for the 8 x 128 x 256 matrix?

– Yes.

• This says the decision to agglomerate the 2nd and 3rd
dimension in the long run has the drawback that the
code portability to more CPUs is impaired.

Reducing Software Engineering Costs

• Software Engineering – the study of techniques to
bring very large projects in on time and on budget.

• One purpose of agglomeration is to look for places
where existing sequential code for a task might exist,

• Use of that code helps bring down the cost of
developing a parallel algorithm from scratch.

Agglomeration Checklist for Checking the
Quality of the Agglomeration

• Locality of parallel algorithm has increased

• Replicated computations take less time than
communications they replace

• Data replication doesn’t affect scalability

• All the agglomerated tasks have similar
computational and communications costs

• Number of tasks increases with problem size

• Number of tasks suitable for likely target systems

• Tradeoff between agglomeration and code
modifications costs is reasonable

Example: Laplace Equation in 1-D

• Combine groups of consecutive mesh points ti
and corresponding solution values ui into
coarse-grain tasks, yielding p tasks, each with
n/p of ui values

• Communication is greatly reduced, but ui
values within each coarse-grain task must be
updated sequentially

Example: Laplace Equation in 1-D

Overlapping Communication and
Computation
• Updating of solution values ui is done only after all

communication has been completed, but only two of
those values actually depend on awaited data

• Since communication is often much slower than
computation, initiate communication by sending all
messages first, then update all “interior” values while
awaiting values from neighboring tasks

• Much (possibly all) of updating can be done while task
would otherwise be idle awaiting messages

• Performance can often be enhanced by overlapping
communication and computation in this manner

Example: Laplace Equation in 1-D

Mapping

• As with agglomeration, mapping of coarse-grain tasks
to processors should maximize concurrency, minimize
communication, maintain good workload balance, etc

• But connectivity of coarse-grain task graph is inherited
from that of fine-grain task graph, whereas
connectivity of target interconnection network is
independent of problem

• Communication channels between tasks may or may
not correspond to physical connections in underlying
interconnection network between processors

Mapping Example

31

(a) is a task/channel graph showing the needed communications
over channels.

(b) shows a possible mapping of the tasks to 3 processors.

Mapping Example

32

If all tasks require the same amount of time and each CPU has
the same capability, this mapping would mean the middle
processor will take twice as long as the other two..

Optimal Mapping

• Optimality is with respect to processor utilization and
interprocessor communication.

• Finding an optimal mapping is NP-hard.

• Must rely on heuristics applied either manually or by
the operating system.

• It is the interaction of the processor utilization and
communication that is important.

• For example, with p processors and n tasks, putting
all tasks on 1 processor makes interprocessor
communication zero, but utilization is 1/p.

33

A Mapping Decision Tree
(Quinn’s Suggestions – Details on pg 72)

• Static number of tasks
– Structured communication

• Constant computation time per task
– Agglomerate tasks to minimize communications
– Create one task per processor

• Variable computation time per task
– Cyclically map tasks to processors

– Unstructured communication
• Use a static load balancing algorithm

• Dynamic number of tasks
– Frequent communication between tasks

• Use a dynamic load balancing algorithm
– Many short-lived tasks. No internal communication

• Use a run-time task-scheduling algorithm
34

Mapping Checklist to Judge the Quality of a Mapping

• Consider designs based on one task per processor
and multiple tasks per processor.

• Evaluate static and dynamic task allocation

• If dynamic task allocation chosen, the task allocator
(i.e., manager) is not a bottleneck to performance

• If static task allocation chosen, ratio of tasks to
processors is at least 10:1

35

Mapping Strategies

• With tasks and processors consecutively
numbered in some ordering,
– block mapping : blocks of n=p consecutive tasks are

assigned to successive processors
– cyclic mapping : task i is assigned to processor i mod p
– reflection mapping : like cyclic mapping except tasks

are assigned in reverse order on alternate passes
– block-cyclic mapping and block-reflection mapping :

blocks of tasks assigned to processors as in cyclic or
reflection

• For higher-dimensional grid, these mappings can
be applied in each dimension

Examples of Mappings

Dynamic Mapping

• If task sizes vary during computation or can’t be
predicted in advance, tasks may need to be reassigned
to processors dynamically to maintain reasonable
workload balance throughout computation

• To be beneficial, gain in load balance must more than
offset cost of communication required to move tasks
and their data between processors

• Dynamic load balancing usually based on local
exchanges of workload information (and tasks, if
necessary), so work diffuses over time to be reasonably
uniform across processors

Task Scheduling

With multiple tasks per processor, execution of those
tasks must be scheduled over time

For shared-memory, any idle processor can simply
select next ready task from common pool of tasks

For distributed-memory, analogous approach is
manager/worker paradigm, with manager
dispatching tasks to workers

Manager/worker scales poorly, as manager becomes
bottleneck, so hierarchy of managers and workers
becomes necessary, or more decentralized scheme

Task Scheduling

• For completely decentralized scheme, it can be difficult
to determine when overall computation has been
completed, so termination detection scheme is
required

• With multithreading, task scheduling can conveniently
be driven by availability of data: whenever executing
task becomes idle awaiting data, another task is
executed

• For problems with regular structure, it is often possible
to determine mapping in advance that yields
reasonable load balance and natural order of execution

Graph Partitioning Dased Data
Decomposition

• In case of sparse matrices, block decompositions are
more complex.

• Consider the problem of multiplying a sparse matrix
with a vector.

• The graph of the matrix is a useful indicator of the
work (number of nodes) and communication (the
degree of each node).

• In this case, we would like to partition the graph so
as to assign equal number of nodes to each process,
while minimizing edge count of the graph partition.

Partitioning the Graph of Lake Superior

Random Partitioning

Partitioning for minimum edge-cut.

