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Computational Model 

Task: sequential program and its local storage 

Parallel computation: two or more tasks executing 

 concurrently  

Communication channel: link between two tasks 
over which messages can be sent and received 
send is nonblocking : sending task resumes execution 

immediately 

receive is blocking : receiving task blocks execution until 

requested message is available 



Example: Laplace Equation in 1-D 

Consider Laplace equation in 1-D 

   u’’(t) = 0 

  on interval a < t < b with BC 

  u(a) = α , u(b) = β  

Seek approximate solution values ui ≈ u(ti) at 
mesh points  

 ti = a + ih, i = 0, .... , n + 1, where  

  h = (b-a)/(n + 1) 



Example: Laplace Equation in 1-D 

• Finite difference approximation 

 
• yields tridiagonal system of algebraic equations 

 
 for ui, i = 1, …., n, where u0 =α  and un+1 = β 

• Starting from initial guess u(0) , compute Jacobi iterates 

  

 

 for k = 1,…. until convergence 



Example: Laplace Equation in 1-D 

• Define n tasks, one for each ui, i = 1 , . . . , n 

• Task i stores initial value of ui and updates it at 
each iteration until convergence 

• To update ui, necessary values of ui-1 and ui+1 
obtained from neighboring tasks i-1 and i+1 

 

 

• Tasks 1 and n determine u0 and un+1 from BC 

 



Example: Laplace Equation in 1-D 

 



Mapping Tasks to Processors 

• Tasks must be assigned to physical processors for 
execution 

• Tasks can be mapped to processors in various ways, 
including multiple tasks per processor 

• Semantics of program should not depend on number 
of processors or particular mapping of tasks to 
processors 

• Performance usually sensitive to assignment of tasks to 
processors due to concurrency, workload balance, 
communication patterns, etc 

• Computational model maps naturally onto distributed-
memory multicomputer using message passing 



Other Models of Parallel Computation 

• PRAM — Parallel Random Access Machine 

• LogP — Latency/Overhead/Gap/Processors 

• BSP — Bulk Synchronous Parallel 

• CSP — Communicating Sequential Processes 

• Linda — Tuple Space 

• and many others 

 
Refer: http://www.ida.liu.se/~chrke/papers/modelsurvey.pdf 



Four-Step Design Methodology 

• Partition : Decompose problem into fine-grain tasks, 
maximizing number of tasks that can execute concurrently 

• Communicate : Determine communication pattern among 
fine-grain tasks, yielding task graph with fine-grain tasks as 
nodes and communication channels as edges 

• Agglomerate : Combine groups of fine-grain tasks to form 
fewer but larger coarse-grain tasks, thereby reducing 
communication requirements 

• Map : Assign coarse-grain tasks to processors, subject to 
tradeoffs between communication costs and concurrency 



Four-Step Design Methodology 

 



Graph Embeddings 

• Target network may be virtual network topology, with 
nodes usually called processes rather than processors 

• Overall design methodology is composed of sequence 
of graph embeddings: 
– fine-grain task graph to coarse-grain task graph 
– coarse-grain task graph to virtual network graph 
– virtual network graph to physical network graph 

• Depending on circumstances, one or more of these 
embeddings may be skipped 

• Target system may automatically map processes of 
virtual network topology to processors of physical 
network 



Partitioning Strategies 

• Domain decomposition : Divide data into pieces 
– Determine how to associate computations with the data 
– Focuses on the largest and most frequently accessed data structure 

• Functional decomposition : Divide computation into pieces 
– Determine how to associate data with the computations 

• Independent tasks : subdivide computation into tasks that do not 
depend on each other (embarrassingly parallel ) 

• Array parallelism : simultaneous operations on entries of vectors, 
matrices, or other arrays 

• Divide-and-conquer : recursively divide problem into tree-like 
hierarchy of subproblems 

• Pipelining : break problem into sequence of stages for  each of 
sequence of objects 

Please post examples for each on piazza. 



Example Domain Decompositions 

Think of the primitive 
tasks as processors. 

In 1st, each 2D slice is 
mapped onto one 
processor of a system 
using 3 processors. 

In second, a 1D slice is 
mapped onto a processor. 

In last, an element is 
mapped onto a processor 

The last leaves more 
primitive tasks and is 
usually  preferred. 



Desirable Properties of Partitioning 

• Maximum possible concurrency in executing 
resulting tasks 

• Many more tasks than processors 

• Number of tasks, rather than size of each task, 
grows as overall problem size increases 

• Tasks reasonably uniform in size 

• Redundant computation or storage avoided 



Communication Patterns 

• Communication pattern determined by data 
dependences among tasks: because storage is 
local to each task, any data stored or produced by 
one task and needed by another must be 
communicated between them 

• Communication pattern may be 
– local or global 

– structured or random 

– persistent or dynamically changing 

– synchronous or sporadic 



Desirable Properties of Communication 

• Frequency and volume minimized 

• Highly localized (between neighboring tasks) 

• Reasonably uniform across channels 

• Network resources used concurrently 

• Does not inhibit concurrency of tasks 

• Overlapped with computation as much as 
possible 



What We Have Hopefully at This Point – and 
What We Don’t Have 

• The first two steps look for parallelism in the problem. 

• However, the design obtained at this point probably doesn’t 
map well onto a real machine. 

• If the number of tasks greatly exceed the number of 
processors, the overhead will be strongly affected by how the 
tasks are assigned to the processors. 

• Now we have to decide what type of computer we are 
targeting  

– Is it a centralized multiprocessor or a multicomputer? 

– What communication paths are supported 

– How must we combine tasks in order to map them 
effectively onto processors? 



Agglomeration 
• Agglomeration: Grouping tasks into larger tasks 

• Goals 

– Improve performance 

– Maintain scalability of program 

– Simplify programming – i.e. reduce software engineering 
costs. 

• In MPI programming, a goal is 

– to lower communication overhead. 

– often to create one agglomerated task per processor 

• By agglomerating primitive tasks that communicate with each 
other, communication is eliminated as the needed data is 
local to a processor. 

 



Agglomeration Can Improve Performance 

• It can eliminate communication between primitive 
tasks agglomerated into consolidated task 

• It can combine groups of sending and receiving tasks 



Scalability 

• Assume we are manipulating a 3D matrix of size 8 x 
128 x 256 and 
– Our target machine is a centralized multiprocessor with 4 

CPUs. 

• Suppose we agglomerate the 2nd and 3rd dimensions. 
Can we run on our target machine? 
– Yes- because we can have tasks which are each responsible 

for a 2 x 128 x 256 submatrix. 

– Suppose we change to a  target machine that is a 
centralized multiprocessor with 8 CPUs. Could our previous 
design basically work. 

– Yes, because each task could handle a 1 x 128 x 256 matrix. 



Scalability 

– However, what if we go to more than 8 CPUs? Would our 
design change if we had agglomerated the 2nd and 3rd 
dimension for the 8 x 128 x 256 matrix? 

– Yes. 

• This says the decision to agglomerate the 2nd and 3rd 
dimension in the long run has the drawback that the 
code portability to more CPUs is impaired. 



Reducing Software Engineering Costs 

• Software Engineering – the study of techniques to 
bring very large projects in on time and on budget. 

• One purpose of agglomeration is to look for places 
where existing sequential code for a task might exist, 

• Use of that code helps bring down the cost of 
developing a parallel algorithm from scratch. 



Agglomeration Checklist for Checking the 
Quality of the Agglomeration 

• Locality of parallel algorithm has increased 

• Replicated computations take less time than 
communications they replace 

• Data replication doesn’t affect scalability 

• All the agglomerated tasks have similar 
computational and communications costs 

• Number of tasks increases with problem size 

• Number of tasks suitable for likely target systems 

• Tradeoff between agglomeration and code 
modifications costs is reasonable 



Example: Laplace Equation in 1-D 

• Combine groups of consecutive mesh points ti 
and corresponding solution values ui into  
coarse-grain tasks, yielding p tasks, each with 
n/p of ui values 

 

 

• Communication is greatly reduced, but ui  
values within each coarse-grain task must be 
updated sequentially 



Example: Laplace Equation in 1-D 

 



Overlapping Communication and 
Computation 
• Updating of solution values ui  is done only after all 

communication has been completed, but only two of 
those values actually depend on awaited data 

• Since communication is often much slower than 
computation, initiate communication by sending all 
messages first, then update all “interior” values while 
awaiting values from neighboring tasks 

• Much (possibly all ) of updating can be done while task 
would otherwise be idle awaiting messages 

• Performance can often be enhanced by overlapping 
communication and computation in this manner 



Example: Laplace Equation in 1-D 

 



Mapping 

• As with agglomeration, mapping of coarse-grain tasks 
to processors should maximize concurrency, minimize 
communication, maintain good workload balance, etc 

• But connectivity of coarse-grain task graph is inherited 
from that of fine-grain task graph, whereas 
connectivity of target interconnection network is 
independent of problem 

• Communication channels between tasks may or may 
not correspond to physical connections in underlying 
interconnection network between processors 



Mapping Example 

31 

(a) is a task/channel graph showing the needed communications 
over channels. 

(b) shows a possible mapping of the tasks to 3 processors. 



Mapping Example 
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If all tasks require the same amount of time and each CPU has 
the same capability, this mapping would mean the middle 
processor will take twice as long as the other two.. 



Optimal Mapping 

• Optimality is with respect to processor utilization and 
interprocessor communication. 

• Finding an optimal mapping is NP-hard. 

• Must rely on heuristics applied either manually or by 
the operating system. 

• It is the interaction of the processor utilization and 
communication that is important. 

• For example, with p processors and n tasks, putting 
all tasks on 1 processor makes interprocessor 
communication zero, but utilization is 1/p. 

33 



A Mapping Decision Tree  
(Quinn’s Suggestions – Details on pg 72) 

• Static number of tasks  
– Structured communication 

• Constant computation time per task 
– Agglomerate tasks to minimize communications 
– Create one task per processor 

• Variable computation time per task 
– Cyclically map tasks to processors 

– Unstructured communication 
• Use a static load balancing algorithm 

• Dynamic number of tasks  
–  Frequent communication between tasks 

• Use a dynamic load balancing algorithm 
– Many short-lived tasks. No internal communication 

• Use a run-time task-scheduling algorithm 
34 



Mapping Checklist to Judge the Quality of a Mapping 

• Consider designs based on one task per processor 
and multiple tasks per processor. 

• Evaluate static and dynamic task allocation 

• If dynamic task allocation chosen, the task allocator 
(i.e., manager) is not a bottleneck to performance 

• If static task allocation chosen, ratio of tasks to 
processors is at least 10:1 

35 



Mapping Strategies 

• With tasks and processors consecutively 
numbered in some ordering, 
– block mapping : blocks of n=p consecutive tasks are 

assigned to successive processors 
– cyclic mapping : task i is assigned to processor i mod p 
– reflection mapping : like cyclic mapping except tasks 

are assigned in reverse order on alternate passes 
– block-cyclic mapping and block-reflection mapping : 

blocks of tasks assigned to processors as in cyclic or 
reflection 

• For higher-dimensional grid, these mappings can 
be applied in each dimension 



Examples of Mappings 

 



Dynamic Mapping 

• If task sizes vary during computation or can’t be 
predicted in advance, tasks may need to be reassigned 
to processors dynamically to maintain reasonable 
workload balance throughout computation 

• To be beneficial, gain in load balance must more than 
offset cost of communication required to move tasks 
and their data between processors 

• Dynamic load balancing usually based on local 
exchanges of workload information (and tasks, if 
necessary), so work diffuses over time to be reasonably 
uniform across processors 



Task Scheduling 

With multiple tasks per processor, execution of those 
tasks must be scheduled over time 

For shared-memory, any idle processor can simply 
select next ready task from common pool of tasks 

For distributed-memory, analogous approach is 
manager/worker paradigm, with manager 
dispatching tasks to workers 

Manager/worker scales poorly, as manager becomes 
bottleneck, so hierarchy of managers and workers 
becomes necessary, or more decentralized scheme 



Task Scheduling 

• For completely decentralized scheme, it can be difficult 
to determine when overall computation has been 
completed, so termination detection scheme is 
required 

• With multithreading, task scheduling can conveniently 
be driven by availability of data: whenever executing 
task becomes idle awaiting data, another task is 
executed 

• For problems with regular structure, it is often possible 
to determine mapping in advance that yields 
reasonable load balance and natural order of execution 



Graph Partitioning Dased Data 
Decomposition  

• In case of sparse matrices, block decompositions are 
more complex.  

• Consider the problem of multiplying a sparse matrix 
with a vector.  

• The graph of the matrix is a useful indicator of the 
work (number of nodes) and communication (the 
degree of each node).  

• In this case, we would like to partition the graph so 
as to assign equal number of nodes to each process, 
while minimizing edge count of the graph partition.  

 



Partitioning the Graph of Lake Superior  

Random Partitioning 

Partitioning for minimum edge-cut. 


