
Parallel Computing

Parallel Architectures and
Interconnects

Readings: Hager’s book (chapter 4)
Pacheco’s book (chapter 2)

https://computing.llnl.gov/tutorials/parallel_comp/

Slides credit: James Demmel, UCB. Georg Hager, Satish Vadiyar, IISc

Parallel Architectures

Parallel Machines and Programming
Models

• Overview of parallel machines (~hardware) and

programming models (~software)
– Shared memory
– Shared address space
– Message passing
– Data parallel
– Clusters of SMPs or GPUs
– Grid

• Note: Parallel machine may or may not be tightly coupled
to programming model
– Historically, tight coupling
– Today, portability is important

A generic parallel architecture

Proc

Interconnection Network

•Where is the memory physically located?
•Is it connected directly to processors?
•What is the connectivity of the network?
•How is parallelism managed?

Memory

Proc
Proc

Proc

Proc Proc

Memory
Memory

Memory Memory

Parallel Programming Models

• Programming model is made up of the languages and libraries that
create an abstract view of the machine

• Control
– How is parallelism created?
– What orderings exist between operations?

• Data
– What data is private vs. shared?
– How is logically shared data accessed or communicated?

• Synchronization
– What operations can be used to coordinate parallelism?
– What are the atomic (indivisible) operations?

• Cost
– How do we account for the cost of each of the above?

Simple Example

• Consider applying a function f to the elements of an
array A and then computing its sum:

• Questions:

– Where does A live? All in single memory? Partitioned?

– What work will be done by each processors?

– They need to coordinate to get a single result, how?

å
-

=

1

0

])[(
n

i

iAf

A:

fA:
f

sum

A = array of all data
fA = f(A)
s = sum(fA)

s:

Programming Model 1: Shared
Memory
• Program is a collection of threads of control.

– Can be created dynamically, mid-execution, in some languages

• Each thread has a set of private variables, e.g., local stack variables

• Also a set of shared variables, e.g., static variables, shared common blocks, or
global heap.

– Threads communicate implicitly by writing and reading shared variables.

– Threads coordinate by synchronizing on shared variables

Pn P1 P0

s
s = ...

y = ..s ...

Shared memory

i: 2 i: 5 Private
memory

i: 8

Simple Example

• Shared memory strategy:
– small number p << n=size(A) processors
– attached to single memory

• Parallel Decomposition:
– Each evaluation and each partial sum is a task.

• Assign n/p numbers to each of p procs
– Each computes independent “private” results and partial sum.
– Collect the p partial sums and compute a global sum.

Two Classes of Data:
• Logically Shared

– The original n numbers, the global sum.

• Logically Private
– The individual function evaluations.
– What about the individual partial sums?

å
-

=

1

0

])[(
n

i

iAf

Shared Memory “Code” for Computing
a Sum

Thread 1

 for i = 0, n/2-1
 s = s + f(A[i])

Thread 2

 for i = n/2, n-1
 s = s + f(A[i])

static int s = 0;

• What is the problem with this program?

• A race condition or data race occurs when:

- Two processors (or two threads) access the same variable, and at least one
does a write.

- The accesses are concurrent (not synchronized) so they could happen
simultaneously

fork(sum,a[0:n/2-1]);
sum(a[n/2,n-1]);

Shared Memory “Code” for Computing
a Sum

Thread 1
 ….
 compute f([A[i]) and put in reg0
 reg1 = s
 reg1 = reg1 + reg0
 s = reg1
 …

Thread 2
 …
 compute f([A[i]) and put in reg0
 reg1 = s
 reg1 = reg1 + reg0
 s = reg1
 …

static int s = 0;

• Assume A = [3,5], f(x) = x2, and s=0 initially

• For this program to work, s should be 32 + 52 = 34 at the end
• but it may be 34,9, or 25

• The atomic operations are reads and writes
• Never see ½ of one number, but += operation is not atomic

• All computations happen in (private) registers

9 25

0 0

9 25

25 9

3 5 A= f (x) = x2

Improved Code for Computing a Sum

Thread 1

 local_s1= 0
 for i = 0, n/2-1
 local_s1 = local_s1 + f(A[i])

 s = s + local_s1

Thread 2

 local_s2 = 0
 for i = n/2, n-1
 local_s2= local_s2 + f(A[i])

 s = s +local_s2

static int s = 0;

• Since addition is associative, it’s OK to rearrange order

• Most computation is on private variables
- Sharing frequency is also reduced, which might improve speed

- But there is still a race condition on the update of shared s

- The race condition can be fixed by adding locks (only one thread can hold a
lock at a time; others wait for it)

static lock lk;

lock(lk);

unlock(lk);

lock(lk);

unlock(lk);

Why not do lock
Inside loop?

Machine Model 1a: Shared Memory

• Processors all connected to a large shared memory.

– Typically called Symmetric Multiprocessors (SMPs)

– SGI, Sun, HP, Intel, IBM SMPs (nodes of Millennium, SP)

– Multicore chips, except that all caches are shared

• Difficulty scaling to large numbers of processors

– <= 32 processors typical

• Advantage: uniform memory access (UMA)

• Cost: much cheaper to access data in cache than main memory.

P1

bus

$

memory

P2

$

Pn

$

Note: $ = cache

shared $

Intel Clevertown Quad
Core Architecture

Shared Address space architectures

• Commodity examples

Intel Core i7 (quad core)
(network is a ring)

AMD Phenom II (six core) SUN Niagara 2

Problems in Scaling Shared Memory
Hardware
• Why not put more processors on (with larger memory?)

– The memory bus becomes a bottleneck
– Caches need to be kept coherent

• Example from a Parallel Spectral Transform Shallow Water Model
(PSTSWM) demonstrates the problem
– Experimental results (and slide) from Pat Worley at ORNL
– This is an important kernel in atmospheric models

• 99% of the floating point operations are multiplies or adds, which generally
run well on all processors

• But it does sweeps through memory with little reuse of operands, so uses
bus and shared memory frequently

– These experiments show performance per processor, with one
“copy” of the code running independently on varying numbers of
procs
• The best case for shared memory: no sharing
• But the data doesn’t all fit in the registers/cache

From Pat Worley, ORNL

Example: Problem in Scaling Shared Memory

• Performance degradation is a
“smooth” function of the
number of processes.

• No shared data between
them, so there should be
perfect parallelism.

• (Code was run for a 18
vertical levels with a range of
horizontal sizes.)

Machine Model 1b: Multithreaded
Processor
• Multiple thread “contexts” without full processors
• Memory and some other state is shared
• Sun Niagra processor (for servers)

– Up to 64 threads all running simultaneously (8 threads x 8 cores)
– In addition to sharing memory, they share floating point units
– Why? Switch between threads for long-latency memory operations

• Cray MTA and Eldorado processors (for HPC)

Memory

shared $, shared floating point units, etc.

T0 T1 Tn

Machine Model 1c: Distributed Shared
Memory

• Memory is logically shared, but physically distributed
– Any processor can access any address in memory

– Cache lines (or pages) are passed around machine

• SGI is canonical example (+ research machines)
– Scales to 512 (SGI Altix (Columbia) at NASA/Ames)

– Limitation is cache coherency protocols – how to keep cached copies
of the same address consistent

– Ex: PSC Blacklight

P1

network

$

memory

P2

$

Pn

$

memory memory

Cache lines (pages) must be
large to amortize overhead

 locality still critical to
performance

Non-uniform memory access (NUMA)

• All processors can access any memory location, but cost of memory access is
different for different processors

Problem with preserving uniform access time: scalability
- Costs are uniform, but memory is uniformly far away
▪ NUMA designs are more scalable
- High bandwidth to local memory; BW scales with number of nodes if most accesses local
- Low latency access to local memory
▪ Increased programmer effort: performance tuning
- Finding, exploiting locality

Shared address space summary

Communication abstraction
- Threads read/write shared variables

- Manipulate synchronization primitives: locks, semaphores, etc.

- Extension of uniprocessor programming

- But NUMA implementation requires reasoning about locality for
performance

Hardware support
- Any processor can load and store from any address

- NUMA designs more scalable than uniform memory access

- Even so, costly to scale (see cost of Blacklight)

Review so far
Programming Models Machine Models

1. Shared Memory 1a. Shared Memory
1b. Multithreaded Procs.
1c. Distributed Shared Mem.

2. Message Passing

2a. Global Address Space

2a. Distributed Memory
2b. Internet & Grid Computing
2c. Global Address Space

3. Data Parallel 3a. SIMD
3b. Vector

4. Hybrid 4. Hybrid

Review so far
Programming Models Machine Models

1. Shared Memory 1a. Shared Memory
1b. Multithreaded Procs.
1c. Distributed Shared Mem.

2. Message Passing

2a. Global Address Space

2a. Distributed Memory
2b. Internet & Grid Computing
2c. Global Address Space

3. Data Parallel 3a. SIMD
3b. Vector

4. Hybrid 4. Hybrid

Programming Model 2: Message Passing
• Program consists of a collection of named processes.
– Usually fixed at program startup time
– Thread of control plus local address space -- NO shared data.
– Logically shared data is partitioned over local processes.

• Processes communicate by explicit send/receive pairs
– Coordination is implicit in every communication event.
– MPI (Message Passing Interface) is the most commonly used SW

Pn P1 P0

y = ..s ...

s: 12

i: 2

Private
memory

s: 14

i: 3

s: 11

i: 1

send P1,s

Network

receive Pn,s

Machine Model 2a: Distributed Memory
• Cray XT4, XT5
• PC Clusters (Berkeley NOW, Beowulf)
• Trestles, Gordon, Ranger, Lonestar, Longhorn are

distributed memory machines, but the nodes are SMPs.
• Each processor has its own memory and cache but cannot

directly access another processor’s memory.
• Each “node” has a Network Interface (NI) for all

communication and synchronization.

interconnect

P0

memory

NI

. . .

P1

memory

NI Pn

memory

NI

PC Clusters: Contributions of Beowulf

• An experiment in parallel computing systems (1994)

• Established vision of low cost, high end computing

• Demonstrated effectiveness of PC clusters for some (not all)
classes of applications

• Provided networking software

• Conveyed findings to broad community (great PR)

Adapted from Gordon Bell, presentation at Salishan 2000

Tflop/s and Pflop/s Clusters

The following are examples of clusters configured out of
separate networks and processor components

• About 82% of Top 500 are clusters (Nov 2012, up from
72% in 2005),
– 4 of top 10

• IBM Cell cluster at Los Alamos (Roadrunner) is #1 in 2008
– 12,960 Cell chips + 6,948 dual-core AMD Opterons;

• 129600 cores altogether

– 1.45 PFlops peak, 1.1PFlops Linpack, 2.5MWatts
– Infiniband connection network

• For more details use “database/sublist generator” at www.top500.org

28

Machine Model 2b: Internet/Grid Computing
• SETI@Home: Running on 500,000 PCs

– ~1000 CPU Years per Day

– 485,821 CPU Years so far

• Sophisticated Data & Signal Processing Analysis

• Distributes Datasets from Arecibo Radio Telescope

Next Step-
Allen Telescope Array

Google
 “volunteer computing”
 or “BOINC”

mailto:SETI@Home

Programming Model 2a: Global Address Space

• Program consists of a collection of named threads.
– Usually fixed at program startup time
– Local and shared data, as in shared memory model
– But, shared data is partitioned over local processes
– Cost models says remote data is expensive

• Examples: UPC, Titanium, Co-Array Fortran
• Global Address Space programming is an intermediate

point between message passing and shared memory

Pn P1 P0 s[myThread] = ...

y = ..s[i] ...
i: 1 i: 5 Private

memory

Shared memory

i: 8

s[0]: 26 s[1]: 32 s[n]: 27

Machine Model 2c: Global Address
Space

• Cray T3D, T3E, X1, and HP Alphaserver cluster
• Clusters built with Quadrics, Myrinet, or Infiniband
• The network interface supports RDMA (Remote Direct

Memory Access)
– NI can directly access memory without interrupting the CPU
– One processor can read/write memory with one-sided

operations (put/get)
– Not just a load/store as on a shared memory machine

• Continue computing while waiting for memory op to finish

– Remote data is typically not cached locally

interconnect

P0

memory

NI

. . .

P1

memory

NI Pn

memory

NI Global address space
may be supported in
varying degrees

Review so far
Programming Models Machine Models

1. Shared Memory 1a. Shared Memory
1b. Multithreaded Procs.
1c. Distributed Shared Mem.

2. Message Passing

2a. Global Address Space

2a. Distributed Memory
2b. Internet & Grid Computing
2c. Global Address Space

3. Data Parallel 3a. SIMD
3b. Vector

4. Hybrid 4. Hybrid

Programming Model 3: Data Parallel
• Single thread of control consisting of parallel operations.

– A = B+C could mean add two arrays in parallel

• Parallel operations applied to all (or a defined subset) of a
data structure, usually an array
– Communication is implicit in parallel operators
– Elegant and easy to understand and reason about
– Coordination is implicit – statements executed synchronously
– Similar to MATLAB language for array operations

• Drawbacks:
– Not all problems fit this model
– Difficult to map onto coarse-grained machines

A:

fA:
f

sum

A = array of all data
fA = f(A)
s = sum(fA)

s:

Machine Model 3a: SIMD System
• A large number of (usually) small processors.
– A single “control processor” issues each instruction.
– Each processor executes the same instruction.
– Some processors may be turned off on some instructions.

• Originally machines were specialized to scientific
computing, few made (CM2, Maspar)

• Programming model can be implemented in the
compiler
– mapping n-fold parallelism to p processors, n >> p,

but it’s hard (e.g., HPF)

interconnect

P1

memory

NI
. . .

control processor

P1

memory

NI P1

memory

NI P1

memory

NI P1

memory

NI

Machine Model 3b: Vector Machines

• Vector architectures are based on a single processor
– Multiple functional units
– All performing the same operation
– Instructions may specify large amounts of parallelism (e.g., 64-

way) but hardware executes only a subset in parallel

• Historically important
– Overtaken by MPPs in the 90s

• Re-emerging in recent years
– At a large scale in the Earth Simulator (NEC SX6) and Cray X1
– At a small scale in SIMD media extensions to microprocessors

• SSE, SSE2 (Intel: Pentium/IA64)
• Altivec (IBM/Motorola/Apple: PowerPC)
• VIS (Sun: Sparc)

– At a larger scale in GPUs

• Key idea: Compiler does some of the difficult work of
finding parallelism, so the hardware doesn‘t have to

Vector Processors
• Vector instructions operate on a vector of elements

– These are specified as operations on vector registers

• A supercomputer vector register holds ~32-64 elts
– The number of elements is larger than the amount of parallel

hardware, called vector pipes or lanes, say 2-4

• The hardware performs a full vector operation in
– #elements-per-vector-register / #pipes

r1 r2

r3

+ +

 … vr2 … vr1

 … vr3

(logically, performs # elts adds
in parallel)

 … vr2 … vr1

(actually, performs #pipes
adds in parallel)

+ + + + + +

Cray X1: Parallel Vector Architecture

Cray combines several technologies in the X1
• 12.8 Gflop/s Vector processors (MSP)

• Shared caches (unusual on earlier vector machines)

• 4 processor nodes sharing up to 64 GB of memory

• Single System Image to 4096 Processors

• Remote put/get between nodes (faster than MPI)

Earth Simulator Architecture

Parallel Vector

Architecture

• High speed (vector)

processors

• High memory

bandwidth (vector

architecture)

• Fast network (new

crossbar switch)

Rearranging commodity

parts can’t match this

performance

Review so far
Programming Models Machine Models

1. Shared Memory 1a. Shared Memory
1b. Multithreaded Procs.
1c. Distributed Shared Mem.

2. Message Passing

2a. Global Address Space

2a. Distributed Memory
2b. Internet & Grid Computing
2c. Global Address Space

3. Data Parallel 3a. SIMD & GPU
3b. Vector

4. Hybrid 4. Hybrid

Machine Model 4: Hybrid machines
• Multicore/SMPs are a building block for a larger

machine with a network

• Common names:
– CLUMP = Cluster of SMPs

• Many modern machines look like this:
– Millennium, IBM SPs, NERSC Franklin, Hopper

• What is an appropriate programming model #4 ???
– Treat machine as “flat”, always use message passing, even within

SMP (simple, but ignores an important part of memory hierarchy).

– Shared memory within one SMP, but message passing outside of an
SMP.

• Graphics or game processors may also be building
block

Programming Model 4: Hybrids

• Programming models can be mixed
– Message passing (MPI) at the top level with shared

memory within a node is common

– New DARPA HPCS languages mix data parallel and
threads in a global address space

– Global address space models can (often) call message
passing libraries or vice verse

– Global address space models can be used in a hybrid
mode
• Shared memory when it exists in hardware

• Communication (done by the runtime system) otherwise

• For better or worse

– Supercomputers often programmed this way for
peak performance

Review so far
Programming Models Machine Models

1. Shared Memory 1a. Shared Memory
1b. Multithreaded Procs.
1c. Distributed Shared Mem.

2. Message Passing

2a. Global Address Space

2a. Distributed Memory
2b. Internet & Grid Computing
2c. Global Address Space

3. Data Parallel 3a. SIMD & GPU
3b. Vector

4. Hybrid 4. Hybrid

What about GPU? What about Cloud?

What about GPU and Cloud?

• GPU’s big performance opportunity is data
parallelism
– Most programs have a mixture of highly parallel

operations, and some not so parallel
– GPUs provide a threaded programming model (CUDA)

for data parallelism to accommodate both
– Current research attempting to generalize programming

model to other architectures, for portability (OpenCL)

• Cloud computing lets large numbers of people easily
share O(105) machines
– MapReduce was first programming model: data parallel

on distributed memory
– More flexible models (Hadoop…) invented since then

Lessons from Lecture

• Three basic conceptual models

– Shared memory

– Distributed memory

– Data parallel

and hybrids of these machines

• All of these machines rely on dividing up work
into parts that are:
– Mostly independent (little synchronization)

– Have good locality (little communication)

• Next Lecture: Interconnection networks…

