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Parallel Architectures  



Parallel Machines and Programming 
Models 
 
• Overview of parallel machines (~hardware) and 

programming models (~software) 
– Shared memory 
– Shared address space 
– Message passing 
– Data parallel 
– Clusters of SMPs or GPUs 
– Grid 

• Note: Parallel machine may or may not be tightly coupled 
to programming model 
– Historically, tight coupling 
– Today, portability is important 

 



A generic parallel architecture 
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Interconnection Network 
 

•Where is the memory physically located? 
•Is it connected directly to processors? 
•What is the connectivity of the network? 
•How is parallelism managed? 
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Parallel Programming Models 

• Programming model is made up of the languages and libraries that 
create an abstract view of the machine 

• Control 
– How is parallelism created? 
– What orderings exist between operations? 

• Data 
– What data is private vs. shared? 
– How is logically shared data accessed or communicated? 

• Synchronization 
– What operations can be used to coordinate parallelism? 
– What are the atomic (indivisible) operations? 

• Cost 
– How do we account for the cost of each of the above? 



Simple Example 

• Consider applying a function f to the elements of an 
array A and then computing its sum:  

 

• Questions: 

– Where does A live?  All in single memory? Partitioned? 

– What work will be done by each processors? 

– They need to coordinate to get a single result, how? 
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A = array of all data 
fA = f(A) 
s = sum(fA) 

s: 



Programming Model 1:  Shared 
Memory 
• Program is a collection of threads of control. 

– Can be created dynamically, mid-execution, in some languages 

• Each thread has a set of private variables, e.g., local stack variables  

• Also a set of shared variables, e.g., static variables, shared common blocks, or 
global heap. 

– Threads communicate implicitly by writing and reading shared variables. 

– Threads coordinate by synchronizing on shared variables 

Pn P1 P0 

s       
s = ... 

y = ..s ... 

Shared memory 

i: 2 i: 5 Private 
memory 

i: 8 



Simple Example 

• Shared memory strategy: 
– small number p << n=size(A) processors  
– attached to single memory 

• Parallel Decomposition:  
– Each evaluation and each partial sum is a task. 

• Assign n/p numbers to each of p procs 
– Each computes independent “private” results and partial sum. 
– Collect the p partial sums and compute a global sum. 

Two Classes of Data:  
• Logically Shared 

– The original n numbers, the global sum. 

• Logically Private 
– The individual function evaluations. 
– What about the individual partial sums? 
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Shared Memory “Code” for Computing 
a Sum 

Thread 1 
 
   for i = 0, n/2-1 
        s = s + f(A[i]) 

Thread 2 
 
  for i = n/2, n-1 
        s = s + f(A[i]) 

static int s = 0; 

• What is the problem with this program?  

 

• A race condition or data race occurs when: 

- Two processors (or two threads) access the same variable, and at least one 
does a write. 

- The accesses are concurrent (not synchronized) so they could happen 
simultaneously 

fork(sum,a[0:n/2-1]); 
sum(a[n/2,n-1]); 



Shared Memory “Code” for Computing 
a Sum 

Thread 1 
  …. 
   compute f([A[i]) and put in reg0 
   reg1 = s  
   reg1 = reg1 + reg0  
   s = reg1 
  … 

Thread 2 
 … 
  compute f([A[i]) and put in reg0 
   reg1 = s  
   reg1 = reg1 + reg0  
   s = reg1 
  … 

static int s = 0; 

• Assume A = [3,5], f(x) = x2, and s=0 initially 

• For this program to work, s should be 32 + 52 = 34 at the end 
• but it may be 34,9, or 25 

• The atomic operations are reads and writes 
• Never see ½ of one number, but += operation is not atomic 

• All computations happen in (private) registers 

9 25 

0 0 

9 25 

25 9 

3 5 A= f (x)  = x2 



Improved Code for Computing a Sum 

Thread 1 
 
    local_s1= 0 
    for i = 0, n/2-1 
        local_s1 = local_s1 + f(A[i]) 
     
    s = s + local_s1 
     

Thread 2 
 
    local_s2 = 0 
    for i = n/2, n-1 
        local_s2= local_s2 + f(A[i]) 
     
    s = s +local_s2 
     

static int s = 0; 
 

• Since addition is associative, it’s OK to rearrange order 

• Most computation is on private variables 
- Sharing frequency is also reduced, which might improve speed  

- But there is still a race condition on the update of shared s 

- The race condition can be fixed by adding locks (only one thread can hold a 
lock at a time; others wait for it) 

static lock lk; 

lock(lk); 

unlock(lk); 

lock(lk); 

unlock(lk); 

Why not do lock 
Inside loop? 



Machine Model 1a:  Shared Memory 

• Processors all connected to a large shared memory. 

– Typically called Symmetric Multiprocessors (SMPs) 

– SGI, Sun, HP, Intel, IBM SMPs (nodes of Millennium, SP) 

– Multicore chips, except that all caches are shared 

• Difficulty scaling to large numbers of processors 

– <= 32 processors typical 

• Advantage: uniform memory access (UMA)  

• Cost: much cheaper to access data in cache than main memory. 
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Intel  Clevertown Quad  
Core Architecture 



Shared Address space architectures 

• Commodity examples  

Intel Core i7 (quad core) 
(network is a ring) 

AMD Phenom II (six core) SUN Niagara 2 



Problems in Scaling Shared Memory 
Hardware 
• Why not put more processors on (with larger memory?) 

– The memory bus becomes a bottleneck 
– Caches need to be kept coherent 

• Example from a Parallel Spectral Transform Shallow Water Model 
(PSTSWM) demonstrates the problem 
– Experimental results (and slide) from Pat Worley at ORNL 
– This is an important kernel in atmospheric models 

• 99% of the floating point operations are multiplies or adds, which generally 
run well on all processors 

• But it does sweeps through memory with little reuse of operands, so uses 
bus and shared memory frequently 

– These experiments show performance per processor,  with one 
“copy” of the code running independently on varying numbers of 
procs 
• The best case for shared memory: no sharing 
• But the data doesn’t all fit in the registers/cache 



From Pat Worley, ORNL 

Example: Problem in Scaling  Shared Memory 

• Performance degradation is a 
“smooth” function of the 
number of processes. 

• No shared data between 
them, so there should be 
perfect parallelism. 
 
 

• (Code was run for a 18 
vertical levels with a range of 
horizontal sizes.) 



Machine Model 1b: Multithreaded 
Processor 
• Multiple thread “contexts” without full processors 
• Memory and some other state is shared 
• Sun Niagra processor (for servers) 

– Up to 64 threads all running simultaneously (8 threads x 8 cores) 
– In addition to sharing memory, they share floating point units  
– Why?  Switch between threads for long-latency memory operations 

• Cray MTA and Eldorado processors (for HPC) 

Memory 

shared $, shared floating point units, etc. 

T0 T1 Tn 



Machine Model 1c: Distributed Shared 
Memory 

• Memory is logically shared, but physically distributed 
– Any processor can access any address in memory 

– Cache lines (or pages) are passed around machine 

• SGI is canonical example (+ research machines) 
– Scales to 512 (SGI Altix (Columbia) at NASA/Ames) 

– Limitation is cache coherency protocols – how to keep cached copies 
of the same address consistent  

– Ex: PSC Blacklight 
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Cache lines (pages) must be 
large to amortize overhead 
  
 locality still critical to 
performance 



Non-uniform memory access (NUMA) 

• All processors can access any memory location, but cost of memory access is 
different for different processors 
 
 
 
 
 
 

Problem with preserving uniform access time: scalability 
- Costs are uniform, but memory is uniformly far away 
▪ NUMA designs are more scalable 
- High bandwidth to local memory; BW scales with number of nodes if most accesses local 
- Low latency access to local memory 
▪ Increased programmer effort: performance tuning 
- Finding, exploiting locality 



 



 



Shared address space summary 

Communication abstraction 
- Threads read/write shared variables 

- Manipulate synchronization primitives: locks, semaphores, etc. 

- Extension of uniprocessor programming 

- But NUMA implementation requires reasoning about locality for 
performance 

 

Hardware support 
- Any processor can load and store from any address 

- NUMA designs more scalable than uniform memory access 

- Even so, costly to scale (see cost of Blacklight) 
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Programming Model 2:  Message Passing 
• Program consists of a collection of named processes. 
– Usually fixed at program startup time 
– Thread of control plus local address space -- NO shared data. 
– Logically shared data is partitioned over local processes. 

• Processes communicate by explicit send/receive pairs 
– Coordination is implicit in every communication event. 
– MPI (Message Passing Interface) is the most commonly used SW 

Pn P1 P0 

y = ..s ... 

s: 12  

i: 2 

Private 
memory 

s: 14  

i: 3 

s: 11  

i: 1 

send P1,s 

Network 

receive Pn,s 



Machine Model 2a:  Distributed Memory 
• Cray XT4, XT5 
• PC Clusters (Berkeley NOW, Beowulf) 
• Trestles, Gordon, Ranger, Lonestar, Longhorn are 

distributed memory machines, but the nodes are SMPs. 
• Each processor has its own memory and cache but cannot 

directly access another processor’s memory. 
• Each “node” has a Network Interface (NI) for all 

communication and synchronization. 
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PC Clusters: Contributions of Beowulf 

• An experiment in parallel computing systems (1994) 

• Established vision of low cost, high end computing 

• Demonstrated effectiveness of PC clusters for some (not all) 
classes of applications 

• Provided networking software 

• Conveyed findings to broad community (great PR) 

Adapted from Gordon Bell, presentation at Salishan 2000 



Tflop/s  and Pflop/s Clusters   

The following are examples of clusters configured out of 
separate networks and processor components 
 

• About 82% of Top 500 are clusters (Nov 2012, up from 
72% in 2005),  
– 4 of top 10 

• IBM Cell cluster at Los Alamos (Roadrunner) is #1 in 2008 
– 12,960 Cell chips + 6,948 dual-core AMD Opterons;  

• 129600 cores altogether 

– 1.45 PFlops peak, 1.1PFlops Linpack, 2.5MWatts 
– Infiniband connection network 

• For more details use “database/sublist generator” at www.top500.org 



28 

Machine Model 2b: Internet/Grid Computing 
• SETI@Home: Running on 500,000 PCs  

– ~1000 CPU Years per Day 

– 485,821 CPU Years so far 

• Sophisticated Data & Signal Processing Analysis 

• Distributes Datasets from Arecibo Radio Telescope 

Next Step- 
Allen Telescope Array 

Google 
  “volunteer computing” 
   or “BOINC” 

mailto:SETI@Home


Programming Model 2a: Global Address Space 

• Program consists of a collection of named threads. 
– Usually fixed at program startup time 
– Local and shared data, as in shared memory model 
– But, shared data is partitioned over local processes 
– Cost models says remote data is expensive 

• Examples: UPC, Titanium, Co-Array Fortran 
• Global Address Space programming is an intermediate 

point between message passing and shared memory 

Pn P1 P0 s[myThread] = ... 

y = ..s[i] ... 
i: 1 i: 5 Private 

memory 

Shared memory 

i: 8 

s[0]: 26 s[1]: 32 s[n]: 27 



Machine Model 2c:  Global Address 
Space 

• Cray T3D, T3E, X1, and HP Alphaserver cluster 
• Clusters built with Quadrics, Myrinet, or Infiniband 
• The network interface supports RDMA (Remote Direct 

Memory Access) 
– NI can directly access memory without interrupting the CPU 
– One processor can read/write memory with one-sided 

operations (put/get) 
– Not just a load/store as on a shared memory machine 

• Continue computing while waiting for memory op to finish 

– Remote data is typically not cached locally  

interconnect 
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memory 

NI Global address space 
may be supported in 
varying degrees 
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Programming Model 3:  Data Parallel 
• Single thread of control consisting of parallel operations. 

– A = B+C could mean add two arrays in parallel 

• Parallel operations applied to all (or a defined subset) of a 
data structure, usually an array 
– Communication is implicit in parallel operators  
– Elegant and easy to understand and reason about  
– Coordination is implicit – statements executed synchronously 
– Similar to MATLAB language for array operations 

• Drawbacks:  
– Not all problems fit this model 
– Difficult to map onto coarse-grained machines 

A: 

fA: 
f 

sum 

A = array of all data 
fA = f(A) 
s = sum(fA) 

s: 



Machine Model 3a:  SIMD System 
• A large number of (usually) small processors. 
– A single “control processor” issues each instruction. 
– Each processor executes the same instruction. 
– Some processors may be turned off on some instructions. 

• Originally machines were specialized to scientific 
computing, few made (CM2, Maspar) 

• Programming model can be implemented in the 
compiler 
– mapping n-fold parallelism to p processors, n >> p, 

but it’s hard (e.g., HPF) 
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Machine Model 3b: Vector Machines 

• Vector architectures are based on a single processor 
– Multiple functional units 
– All performing the same operation 
– Instructions may specify large amounts of parallelism (e.g., 64-

way) but hardware executes only a subset in parallel 

• Historically important 
– Overtaken by MPPs in the 90s 

• Re-emerging in recent years 
– At a large scale in the Earth Simulator (NEC SX6) and Cray X1 
– At a small scale in SIMD media extensions to microprocessors 

• SSE, SSE2 (Intel: Pentium/IA64) 
• Altivec (IBM/Motorola/Apple: PowerPC) 
• VIS (Sun: Sparc) 

– At a larger scale in GPUs 

• Key idea: Compiler does some of the difficult work of 
finding parallelism, so the hardware doesn‘t have to 



Vector Processors 
• Vector instructions operate on a vector of elements 

– These are specified as operations on vector registers 
 
 
 
 
 

• A supercomputer vector register holds ~32-64 elts 
– The number of elements is larger than the amount of parallel 

hardware, called vector pipes or lanes, say 2-4 

• The hardware performs a full vector operation in 
– #elements-per-vector-register /  #pipes 

r1 r2 

r3 

+ + 

                   …       vr2                    …       vr1 

                   …       vr3 

(logically, performs # elts adds 
in parallel) 

                   …       vr2                    …       vr1 

(actually, performs #pipes 
adds in parallel) 

+ + + + + + 



Cray X1: Parallel Vector Architecture 

Cray combines several technologies in the X1 
• 12.8 Gflop/s Vector processors (MSP) 

• Shared caches (unusual on earlier vector machines) 

• 4 processor nodes sharing up to 64 GB of memory 

• Single System Image to 4096 Processors 

• Remote put/get between nodes (faster than MPI) 



Earth Simulator Architecture 

Parallel Vector 

Architecture 

• High speed (vector) 

processors 

• High memory 

bandwidth (vector 

architecture) 

• Fast network (new 

crossbar switch) 

Rearranging  commodity 

parts can’t match this  

performance 
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Machine Model 4:  Hybrid machines 
• Multicore/SMPs are a building block for a larger 

machine with a network 

• Common names: 
– CLUMP = Cluster of SMPs 

• Many modern machines look like this: 
– Millennium, IBM SPs, NERSC Franklin, Hopper  

• What is an appropriate programming model #4 ??? 
– Treat machine as “flat”, always use message passing, even within 

SMP (simple, but ignores an important part of memory hierarchy). 

– Shared memory within one SMP, but message passing outside of an 
SMP. 

• Graphics or game processors may also be building 
block 



Programming Model 4: Hybrids 

• Programming models can be mixed  
– Message passing (MPI) at the top level with shared 

memory within a node is common 

– New DARPA HPCS languages mix data parallel and 
threads in a global address space 

– Global address space models can (often) call message 
passing libraries or vice verse 

– Global address space models can be used in a hybrid 
mode 
• Shared memory when it exists in hardware 

• Communication (done by the runtime system) otherwise 

• For better or worse 

– Supercomputers often programmed this way for 
peak performance 
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What about GPU and Cloud? 

• GPU’s big performance opportunity is data 
parallelism 
– Most programs have a mixture of highly parallel 

operations, and some not so parallel 
– GPUs provide a threaded programming model (CUDA) 

for data parallelism to accommodate both 
– Current research attempting to generalize programming 

model to other architectures, for portability (OpenCL) 

• Cloud computing lets large numbers of people easily 
share O(105) machines 
– MapReduce was first programming model: data parallel 

on distributed memory 
– More flexible models (Hadoop…) invented since then 



Lessons from Lecture  

• Three basic conceptual models 

– Shared memory 

– Distributed memory 

– Data parallel 

and hybrids of these machines  

• All of these machines rely on dividing up work 
into parts that are: 
– Mostly independent (little synchronization) 

– Have good locality (little communication) 

• Next Lecture: Interconnection networks… 


