Parallel Programming in C with MPI and OpenMP

Michael J. Quinn

$M c$
 Graw
 Hill

Chapter 12

Solving Linear Systems

Outline

- Terminology
- Back substitution
\square Gaussian elimination
- Jacobi method
- Conjugate gradient method

Terminology

- System of linear equations
- Solve $A x=b$ for x
- Special matrices
\diamond Upper triangular
Lower triangular
- Diagonally dominant
- Symmetric

Upper Triangular

4	2	-1	5	9	2
0	-4	5	6	0	-4
0	0	3	2	4	6
0	0	0	0	9	2
0	0	0	0	8	7
0	0	0	0	0	2

Lower Triangular

4	0	0	0	0	0
0	0	0	0	0	0
5	4	3	0	0	0
2	6	2	3	0	0
8	-2	0	1	8	0
-3	5	7	9	5	2

Diagonally Dominant

19	0	2	2	0	6
0	-15	2	0	-3	0
5	4	22	-1	0	4
2	3	2	13	0	-5
5	-2	0	1	16	0
-3	5	5	3	5	-32

Symmetric

3	0	5	2	0	6
0	7	4	3	-3	5
5	4	0	-1	0	4
2	3	-1	9	0	-5
0	-3	0	0	5	5
6	5	4	-5	5	-3

Back Substitution

- Used to solve upper triangular system $T x=b$ for x
- Methodology: one element of x can be immediately computed
- Use this value to simplify system, revealing another element that can be immediately computed
- Repeat

Back Substitution

$$
\begin{aligned}
& 1 x_{0}+1 x_{1}-1 x_{2}+4 x_{3}=8 \\
& -2 x_{1}-3 x_{2}+1 x_{3} \quad=\quad 5 \\
& 2 x_{2}-3 x_{3} \quad=\quad 0 \\
& 2 x_{3} \quad=\quad 4
\end{aligned}
$$

Back Substitution

$$
\begin{array}{rcccc}
1 x_{0}+1 x_{1} & -1 x_{2} & +4 x_{3} & = & 8 \\
-2 x_{1} & -3 x_{2} & +1 x_{3} & = & 5 \\
& 2 x_{2} & -3 x_{3} & = & 0 \\
x_{3}=2 & & 2 x_{3} & = & 4
\end{array}
$$

Back Substitution

$$
\begin{array}{llll}
1 x_{0}+1 x_{1}-1 x_{2} & & = & 0 \\
-2 x_{1} & -3 x_{2} & & 3 \\
& 2 x_{2} & & 6 \\
& & 2 x_{3} & = \\
& & 4
\end{array}
$$

Back Substitution

$$
\begin{array}{llll}
1 x_{0}+1 x_{1}-1 x_{2} & & = & 0 \\
-2 x_{1} & -3 x_{2} & & = \\
& & & \\
& 2 x_{2} & & \\
& & & \\
x_{2}=3 & & 2 x_{3} & = \\
& & 4
\end{array}
$$

Back Substitution

$$
\begin{array}{rlrl}
1 x_{0}+1 x_{1} & & = & 3 \\
-2 x_{1} & & & 12 \\
2 x_{2} & & 6 \\
& & & \\
& 2 x_{3} & = & 4
\end{array}
$$

Back Substitution

$$
\begin{array}{rlrl}
1 x_{0}+1 x_{1} & & = & 3 \\
-2 x_{1} & & = & 12 \\
& 2 x_{2} & & 6 \\
& & & \\
x_{1}=-6 & 2 x_{3} & = & 4
\end{array}
$$

Back Substitution

$1 x_{0}$		$=$	9
$-2 x_{1}$			12
$2 x_{2}$		6	
	$2 x_{3}$	$=$	4

Back Substitution

$$
\begin{array}{lll}
1 x_{0} & = & 9 \\
& & \\
& & \\
& 2 x_{1} & \\
& & \\
& & \\
& & \\
x_{0}=9 & 2 x_{2} & \\
& & 6
\end{array}
$$

Pseudocode

for $i \leftarrow n-1$ down to 1 do $x[i] \leftarrow b[i] / a[i, i]$ for $j \leftarrow 0$ to $i-1$ do

$$
b[j] \leftarrow b[j]-x[i] \times a[j, i]
$$

endfor
endfor

Time complexity: $\Theta\left(n^{2}\right)$

Data Dependence Diagram

We cannot execute the outer loop in parallel. We can execute the inner loop in parallel.

Row-oriented Algorithm

- Associate primitive task with each row of A and corresponding elements of x and b
- During iteration i task associated with row j computes new value of b_{j}
- Task i must compute x_{i} and broadcast its value
- Agglomerate using rowwise interleaved striped decomposition

Interleaved Decompositions

Rowwise interleaved striped decomposition

Columnwise interleaved striped decomposition

Complexity Analysis

- Each process performs about $n /(2 p)$ iterations of loop j in all
- A total of $n-1$ iterations in all
\square Computational complexity: $\Theta\left(n^{2} / p\right)$
- One broadcast per iteration
- Communication complexity: $\Theta(n \log p)$

Gaussian Elimination

- Used to solve $A x=b$ when A is dense
- Reduces $A x=b$ to upper triangular system
$T x=c$
- Back substitution can then solve $T x=c$ for x

Gaussian Elimination

$$
\begin{array}{llll}
4 x_{0}+6 x_{1}+2 x_{2}-2 x_{3} & = & 8 \\
2 x_{0} & +5 x_{2}-2 x_{3} & = & 4 \\
-4 x_{0}-3 x_{1}-5 x_{2}+4 x_{3} & = & 1 \\
8 x_{0}+18 x_{1}-2 x_{2}+3 x_{3} & = & 40
\end{array}
$$

Gaussian Elimination

$$
\begin{array}{rlll}
4 x_{0}+6 x_{1}+2 x_{2}-2 x_{3} & = & 8 \\
-3 x_{1}+4 x_{2}-1 x_{3} & = & 0 \\
+3 x_{1}-3 x_{2}+2 x_{3} & = & 9 \\
+6 x_{1}-6 x_{2}+7 x_{3} & = & 24
\end{array}
$$

Gaussian Elimination

$$
\begin{aligned}
& 4 x_{0}+6 x_{1}+2 x_{2}-2 x_{3}=8 \\
& -3 x_{1}+4 x_{2}-1 x_{3}=0 \\
& 1 x_{2}+1 x_{3}=9 \\
& 2 x_{2}+5 x_{3}=24
\end{aligned}
$$

Gaussian Elimination

$$
\begin{aligned}
& 4 x_{0}+6 x_{1}+2 x_{2}-2 x_{3}=8 \\
& -3 x_{1}+4 x_{2}-1 x_{3}=0 \\
& 1 x_{2}+1 x_{3}=9 \\
& 3 x_{3}=6
\end{aligned}
$$

Iteration of Gaussian Elimination

Numerical Stability Issues

- If pivot element close to zero, significant roundoff errors can result
- Gaussian elimination with partial pivoting eliminates this problem
- In step i we search rows i through $n-1$ for the row whose column i element has the largest absolute value
- Swap (pivot) this row with row i

Row-oriented Parallel Algorithm

- Associate primitive task with each row of A and corresponding elements of x and b
- A kind of reduction needed to find the identity of the pivot row
- Tournament: want to determine identity of row with largest value, rather than largest value itself
\square Could be done with two all-reductions
- MPI provides a simpler, faster mechanism

MPI_MAXLOC, MPI_MINLOC

- MPI provides reduction operators MPI_MAXLOC, MPI_MINLOC
- Provide datatype representing a (value, index) pair

MPI (value, index) Datatypes

MPI_Datatype	Meaning
MPI_2INT	Two ints
MPI_DOUBLE_INT	A double followed by an int
MPI_FLOAT_INT	A float followed by an int
MPI_LONG_INT	A long followed by an int
MPI_LONG_DOUBLE_INT	A long double followed by an int
MPI_SHORT_INT	A short followed by an int

Example Use of MPI_MAXLOC

```
struct {
    double value;
    int index;
} local, global;
local.value = fabs(a[j][i]);
local.index = j;
```

MPI_Allreduce (\&local, \&global, 1,
MPI_DOUBLE_INT, MPI_MAXLOC,
MPI_COMM_NORID) ;

Second Communication per Iteration

Communication Complexity

- Complexity of tournament: $\Theta(\log p)$
- Complexity of broadcasting pivot row: $\Theta(n \log p)$
- A total of $n-1$ iterations
- Overall communication complexity: $\Theta\left(n^{2} \log p\right)$

Column-oriented Algorithm

- Associate a primitive task with each column of A and another primitive task for b
- During iteration i task controlling column i determines pivot row and broadcasts its identity
- During iteration i task controlling column i must also broadcast column i to other tasks
- Agglomerate tasks in an interleaved fashion to balance workloads
- Isoefficiency same as row-oriented algorithm

Comparison of Two Algorithms

- Both algorithms evenly divide workload
- Both algorithms do a broadcast each iteration
- Difference: identification of pivot row
- Row-oriented algorithm does search in parallel but requires all-reduce step
- Column-oriented algorithm does search sequentially but requires no communication
- Row-oriented superior when n relatively larger and p relatively smaller

Problems with These Algorithms

- They break parallel execution into computation and communication phases
- Processes not performing computations during the broadcast steps
- Time spent doing broadcasts is large enough to ensure poor scalability

Pipelined, Row-Oriented Algorithm

- Want to overlap communication time with computation time
- We could do this if we knew in advance the row used to reduce all the other rows.
- Let's pivot columns instead of rows!
- In iteration i we can use row i to reduce the other rows.

Communication Pattern

Communication Pattern

Communication Pattern

Row 0

Reducing Using
 Row 0

Reducing Using Row 0

Communication Pattern

Reducing Using
Row 0

Reducing Using Row 0

Reducing Using Row 0

Communication Pattern

Reducing Using Row 0

Reducing Using Row 0

Communication Pattern

Communication Pattern

Reducing Using Row 1

Communication Pattern

Reducing Using Row 1

Reducing Using Row 1

Communication Pattern

Reducing Using
Row 1

Reducing Using
Row 1
Reducing Using Row 1

Reducing Using Row 1

Analysis

- Total computation time: $\Theta\left(n^{3} / p\right)$
- Total message transmission time: $\Theta\left(n^{2}\right)$
- When n large enough, message transmission time completely overlapped by computation time
- Message start-up not overlapped: $\Theta(n)$
- Parallel overhead: $\Theta(n p)$

Sparse Systems

- Gaussian elimination not well-suited for sparse systems
- Coefficient matrix gradually fills with nonzero elements
- Result
- Increases storage requirements
\diamond Increases total operation count

4×an	COt	99
0		
－	－140ロ日吅	
－19	吅阯	
吅明吅吅	吅唯	吅明吅吅
		\square
	\square	
－	吅吅吅	\square
3	4	5
뭄ㅁ		
		唯早限吅吅
吅里咟昰		
吅㬉咟		
	吅吅阯	
吅吅吅昆	吅吅阯旦ㅂ	
	吅吅吅旦豆	
ロロロロロ｜ロロ	ロロロロロ｜ㅁํ	－
6	7	8
뭄ㅁㅁ	－	－
－19808	－	
	吅咟昰吅	
吅咀咟吅		
吅昭昭吅	吅吅旦㫜	
8ロロ		
吅吅量豆		
吅吅吅量量		
－	－ロロロロロロロ	－

Iterative Methods

- Iterative method: algorithm that generates a series of approximations to solution's value
- Require less storage than direct methods
- Since they avoid computations on zero elements, they can save a lot of computations

Jacobi Method

$$
x_{i}^{k+1}=\frac{1}{a_{i, i}}\left(b_{i}-\sum_{j \neq i} a_{i, j} x_{j}^{k}\right)
$$

Values of elements of vector x at iteration $k+1$ depend upon values of vector x at iteration k

Gauss-Seidel method: Use latest version available of x_{i}

Jacobi Method Iterations

Rate of Convergence

- Even when Jacobi method and Gauss-Seidel methods converge on solution, rate of convergence often too slow to make them practical
- We will move on to an iterative method with much faster convergence

Conjugate Gradient Method

- A is positive definite if for every nonzero vector x and its transpose x^{T}, the product $x^{T} A x>0$
- If A is symmetric and positive definite, then the function

$$
q(x)=\frac{1}{2} x^{T} A x-x^{T} b+c
$$

has a unique minimizer that is solution to $A x=b$
\square Conjugate gradient is an iterative method that solves $A x=b$ by minimizing $q(x)$

Conjugate Gradient Convergence

Finds value of n-dimensional solution in at most n iterations

Conjugate Gradient Computations

- Matrix-vector multiplication
- Inner product (dot product)
- Matrix-vector multiplication has higher time complexity
- Must modify previously developed algorithm to account for sparse matrices

Rowwise Block Striped Decomposition of a Symmetrically Banded Matrix
 Decomposition

Matrix	
$\begin{array}{lllllllllll} ■ & \square \\ \square & \square \\ \square & \square \\ \square \\ \square & \square \end{array}$	
ロロロロロロ■■■ロ■ロ ロ ロ ロ ロ ロ ロ ロ ロ ■ ■ ㅁ口ロロ ㅁ ロ ■ ロ ロ ■ ロ 	

Representation of Vectors

- Replicate vectors
- Need all-gather step after matrix-vector multiply
- Inner product has time complexity $\Theta(n)$
\square Block decomposition of vectors
\checkmark Need all-gather step before matrix-vector multiply
- Inner product has time complexity

$$
\Theta(n / p+\log p)
$$

Summary

- Solving systems of linear equations Direct methods
- Iterative methods
- Parallel designs for
- Back substitution
- Gaussian elimination
- Conjugate gradient method

