
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Parallel Programming
in C with MPI and OpenMP

Michael J. Quinn

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 12

Solving Linear Systems

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Outline

 Terminology

 Back substitution

 Gaussian elimination

 Jacobi method

 Conjugate gradient method

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Terminology

 System of linear equations

Solve Ax = b for x

 Special matrices

Upper triangular

Lower triangular

Diagonally dominant

Symmetric

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Upper Triangular

4 2 -1 5 9 2

0 -4 5 6 0 -4

0 0 3 2 4 6

0 0 0 0 9 2

0 0 0 0 8 7

0 0 0 0 0 2

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Lower Triangular

4 0 0 0 0 0

0 0 0 0 0 0

5 4 3 0 0 0

2 6 2 3 0 0

8 -2 0 1 8 0

-3 5 7 9 5 2

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Diagonally Dominant

19 0 2 2 0 6

0 -15 2 0 -3 0

5 4 22 -1 0 4

2 3 2 13 0 -5

5 -2 0 1 16 0

-3 5 5 3 5 -32

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Symmetric

3 0 5 2 0 6

0 7 4 3 -3 5

5 4 0 -1 0 4

2 3 -1 9 0 -5

0 -3 0 0 5 5

6 5 4 -5 5 -3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Back Substitution

 Used to solve upper triangular system
Tx = b for x

 Methodology: one element of x can be
immediately computed

 Use this value to simplify system, revealing
another element that can be immediately
computed

 Repeat

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Back Substitution

1x0 +1x1 –1x2 +4x3 8 =

– 2x1 –3x2 +1x3 5 =

2x2 – 3x3 0 =

2x3 4 =

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Back Substitution

1x0 +1x1 –1x2 +4x3 8 =

– 2x1 –3x2 +1x3 5 =

2x2 – 3x3 0 =

2x3 4 = x3 = 2

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Back Substitution

1x0 +1x1 –1x2 0 =

– 2x1 –3x2 3 =

2x2 6 =

2x3 4 =

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Back Substitution

1x0 +1x1 –1x2 0 =

– 2x1 –3x2 3 =

2x2 6 =

2x3 4 = x2 = 3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Back Substitution

1x0 +1x1 3 =

– 2x1 12 =

2x2 6 =

2x3 4 =

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Back Substitution

1x0 +1x1 3 =

– 2x1 12 =

2x2 6 =

2x3 4 = x1 = –6

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Back Substitution

1x0 9 =

– 2x1 12 =

2x2 6 =

2x3 4 =

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Back Substitution

1x0 9 =

– 2x1 12 =

2x2 6 =

2x3 4 = x0 = 9

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Pseudocode

for i  n  1 down to 1 do

 x [i]  b [i] / a [i, i]
 for j  0 to i  1 do

 b [j]  b [j]  x [i] × a [j, i]

 endfor

endfor

Time complexity: (n2)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Data Dependence Diagram

We cannot execute the outer loop in parallel.

We can execute the inner loop in parallel.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Row-oriented Algorithm

 Associate primitive task with each row of A
and corresponding elements of x and b

 During iteration i task associated with row j
computes new value of bj

 Task i must compute xi and broadcast its
value

 Agglomerate using rowwise interleaved
striped decomposition

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Interleaved Decompositions

Rowwise interleaved

striped decomposition

Columnwise interleaved

striped decomposition

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Complexity Analysis

 Each process performs about n / (2p)

iterations of loop j in all

 A total of n -1 iterations in all

 Computational complexity: (n2/p)

 One broadcast per iteration

 Communication complexity: (n log p)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Gaussian Elimination

 Used to solve Ax = b when A is dense

 Reduces Ax = b to upper triangular system

Tx = c

 Back substitution can then solve Tx = c

for x

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Gaussian Elimination

4x0 +6x1 +2x2 – 2x3 = 8

2x0 +5x2 – 2x3 = 4

–4x0 – 3x1 – 5x2 +4x3 = 1

8x0 +18x1 – 2x2 +3x3 = 40

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Gaussian Elimination

4x0 +6x1 +2x2 – 2x3 = 8

 +4x2 – 1x3 = 0

 +3x1 – 3x2 +2x3 = 9

 +6x1 – 6x2 +7x3 = 24

– 3x1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Gaussian Elimination

4x0 +6x1 +2x2 – 2x3 = 8

 +4x2 – 1x3 = 0

 1x2 +1x3 = 9

 2x2 +5x3 = 24

– 3x1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Gaussian Elimination

4x0 +6x1 +2x2 – 2x3 = 8

 +4x2 – 1x3 = 0

 1x2 +1x3 = 9

 3x3 = 6

– 3x1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Iteration of Gaussian Elimination

Elements that will not be changed

Elements that will be changed

Pivot row

Elements already driven to 0

i

i

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Numerical Stability Issues

 If pivot element close to zero, significant
roundoff errors can result

 Gaussian elimination with partial pivoting
eliminates this problem

 In step i we search rows i through n-1 for
the row whose column i element has the
largest absolute value

 Swap (pivot) this row with row i

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Row-oriented Parallel Algorithm

 Associate primitive task with each row of A and

corresponding elements of x and b

 A kind of reduction needed to find the identity of

the pivot row

 Tournament: want to determine identity of row

with largest value, rather than largest value itself

 Could be done with two all-reductions

 MPI provides a simpler, faster mechanism

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

MPI_MAXLOC, MPI_MINLOC

 MPI provides reduction operators

MPI_MAXLOC, MPI_MINLOC

 Provide datatype representing a (value,

index) pair

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

MPI (value,index) Datatypes

MPI_Datatype Meaning

MPI_2INT Two ints

MPI_DOUBLE_INT A double followed by an int

MPI_FLOAT_INT A float followed by an int

MPI_LONG_INT A long followed by an int

MPI_LONG_DOUBLE_INT A long double followed by

an int

MPI_SHORT_INT A short followed by an int

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example Use of MPI_MAXLOC

struct {

 double value;

 int index;

} local, global;

...

local.value = fabs(a[j][i]);

local.index = j;

...

MPI_Allreduce (&local, &global, 1,

 MPI_DOUBLE_INT, MPI_MAXLOC,

 MPI_COMM_WORLD);

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Second Communication per

Iteration

j

i

picked

k

a[picked][k]

a[picked][i]

a[j][i]

a[j][k]

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Communication Complexity

 Complexity of tournament: (log p)

 Complexity of broadcasting pivot row:

(n log p)

 A total of n - 1 iterations

 Overall communication complexity:

(n2 log p)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Column-oriented Algorithm

 Associate a primitive task with each column of A
and another primitive task for b

 During iteration i task controlling column i
determines pivot row and broadcasts its identity

 During iteration i task controlling column i must
also broadcast column i to other tasks

 Agglomerate tasks in an interleaved fashion to
balance workloads

 Isoefficiency same as row-oriented algorithm

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Comparison of Two Algorithms

 Both algorithms evenly divide workload

 Both algorithms do a broadcast each iteration

 Difference: identification of pivot row

 Row-oriented algorithm does search in parallel
but requires all-reduce step

 Column-oriented algorithm does search
sequentially but requires no communication

 Row-oriented superior when n relatively larger
and p relatively smaller

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Problems with These Algorithms

 They break parallel execution into

computation and communication phases

 Processes not performing computations

during the broadcast steps

 Time spent doing broadcasts is large

enough to ensure poor scalability

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Pipelined, Row-Oriented Algorithm

 Want to overlap communication time with

computation time

 We could do this if we knew in advance the

row used to reduce all the other rows.

 Let’s pivot columns instead of rows!

 In iteration i we can use row i to reduce the

other rows.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Communication Pattern

0

2

1
3

Row 0

Reducing Using

Row 0

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Communication Pattern

0

2

1
3

Reducing Using

Row 0

Reducing Using

Row 0

Row 0

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Communication Pattern

0

2

1
3

Reducing Using

Row 0

Reducing Using

Row 0

Reducing Using

Row 0

Row 0

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Communication Pattern

0

2

1
3

Reducing Using

Row 0

Reducing Using

Row 0

Reducing Using

Row 0

Reducing Using

Row 0

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Communication Pattern

0

2

1
3 Reducing Using

Row 0

Reducing Using

Row 0

Reducing Using

Row 0

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Communication Pattern

0

2

1
3 Reducing Using

Row 1

Reducing Using

Row 0

Reducing Using

Row 0

Row 1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Communication Pattern

0

2

1
3 Reducing Using

Row 1

Reducing Using

Row 1

Reducing Using

Row 0

Row 1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Communication Pattern

0

2

1
3 Reducing Using

Row 1

Reducing Using

Row 1

Reducing Using

Row 1

Row 1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Communication Pattern

0

2

1
3

Reducing Using

Row 1

Reducing Using

Row 1

Reducing Using

Row 1

Reducing Using

Row 1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Analysis

 Total computation time: (n3/p)

 Total message transmission time: (n2)

 When n large enough, message transmission

time completely overlapped by computation

time

 Message start-up not overlapped: (n)

 Parallel overhead: (np)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Sparse Systems

 Gaussian elimination not well-suited for

sparse systems

 Coefficient matrix gradually fills with

nonzero elements

 Result

 Increases storage requirements

 Increases total operation count

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example of “Fill”

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Iterative Methods

 Iterative method: algorithm that generates a

series of approximations to solution’s value

 Require less storage than direct methods

 Since they avoid computations on zero

elements, they can save a lot of

computations

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Jacobi Method




 
ij

k

jjiia

k

i xabx
ii

)(,
11

,




 
ij

k

jjiia

k

i xabx
ii

)(,
11

,

Values of elements of vector x at iteration k+1

depend upon values of vector x at iteration k

Gauss-Seidel method: Use latest version

available of xi

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Jacobi Method Iterations
4

3

2

1

1 2 3 4
0

x

x
3

1
x

2
x

4
x

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Rate of Convergence

 Even when Jacobi method and Gauss-Seidel

methods converge on solution, rate of

convergence often too slow to make them

practical

 We will move on to an iterative method

with much faster convergence

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Conjugate Gradient Method

 A is positive definite if for every nonzero vector x
and its transpose xT, the product xTAx > 0

 If A is symmetric and positive definite, then the
function

 has a unique minimizer that is solution to Ax = b

 Conjugate gradient is an iterative method that
solves Ax = b by minimizing q(x)

cbxAxxxq TT 
2
1)(

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Conjugate Gradient Convergence

4

3

2

1

1 2 3 4
0

x

1
x

2
x Finds value of

n-dimensional solution

in at most n iterations

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Conjugate Gradient

Computations

 Matrix-vector multiplication

 Inner product (dot product)

 Matrix-vector multiplication has higher

time complexity

 Must modify previously developed

algorithm to account for sparse matrices

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Rowwise Block Striped

Decomposition of a Symmetrically

Banded Matrix

(a) (b)

Matrix

Decomposition

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Representation of Vectors

 Replicate vectors

 Need all-gather step after matrix-vector
multiply

 Inner product has time complexity (n)

 Block decomposition of vectors

 Need all-gather step before matrix-vector
multiply

 Inner product has time complexity
(n/p + log p)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Summary

 Solving systems of linear equations

Direct methods

 Iterative methods

 Parallel designs for

Back substitution

Gaussian elimination

Conjugate gradient method

