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Solving Linear Systems 
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Outline 

 Terminology 

 Back substitution 

 Gaussian elimination 

 Jacobi method 

 Conjugate gradient method 
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Terminology 

 System of linear equations 

Solve Ax = b for x 

 Special matrices 

Upper triangular 

Lower triangular 

Diagonally dominant 

Symmetric 
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Upper Triangular 

4 2 -1 5 9 2 

0 -4 5 6 0 -4 

0 0 3 2 4 6 

0 0 0 0 9 2 

0 0 0 0 8 7 

0 0 0 0 0 2 
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Lower Triangular 

4 0 0 0 0 0 

0 0 0 0 0 0 

5 4 3 0 0 0 

2 6 2 3 0 0 

8 -2 0 1 8 0 

-3 5 7 9 5 2 
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Diagonally Dominant 

19 0 2 2 0 6 

0 -15 2 0 -3 0 

5 4 22 -1 0 4 

2 3 2 13 0 -5 

5 -2 0 1 16 0 

-3 5 5 3 5 -32 
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Symmetric 

3 0 5 2 0 6 

0 7 4 3 -3 5 

5 4 0 -1 0 4 

2 3 -1 9 0 -5 

0 -3 0 0 5 5 

6 5 4 -5 5 -3 
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Back Substitution 

 Used to solve upper triangular system 
Tx = b for x 

 Methodology: one element of x can be 
immediately computed 

 Use this value to simplify system, revealing 
another element that can be immediately 
computed 

 Repeat 
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Back Substitution 

1x0 +1x1 –1x2 +4x3 8 = 

– 2x1 –3x2 +1x3 5 = 

2x2 – 3x3 0 = 

2x3 4 = 
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Back Substitution 

1x0 +1x1 –1x2 +4x3 8 = 

– 2x1 –3x2 +1x3 5 = 

2x2 – 3x3 0 = 

2x3 4 = x3 = 2 
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Back Substitution 

1x0 +1x1 –1x2 0 = 

– 2x1 –3x2 3 = 

2x2 6 = 

2x3 4 = 
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Back Substitution 

1x0 +1x1 –1x2 0 = 

– 2x1 –3x2 3 = 

2x2 6 = 

2x3 4 = x2 = 3 
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Back Substitution 

1x0 +1x1 3 = 

– 2x1 12 = 

2x2 6 = 

2x3 4 = 
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Back Substitution 

1x0 +1x1 3 = 

– 2x1 12 = 

2x2 6 = 

2x3 4 = x1 = –6 
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Back Substitution 

1x0 9 = 

– 2x1 12 = 

2x2 6 = 

2x3 4 = 
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Back Substitution 

1x0 9 = 

– 2x1 12 = 

2x2 6 = 

2x3 4 = x0 = 9 
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Pseudocode 

for i  n  1 down to 1 do 

 x [ i ]  b [ i ] / a [ i, i ] 
 for j  0 to i  1 do 

  b [ j ]  b [ j ]  x [ i ] × a [ j, i ] 

 endfor 

endfor 

Time complexity: (n2) 
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Data Dependence Diagram 

We cannot execute the outer loop in parallel. 

We can execute the inner loop in parallel. 
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Row-oriented Algorithm 

 Associate primitive task with each row of A 
and corresponding elements of x and b 

 During iteration i task associated with row j 
computes new value of bj 

 Task i must compute xi and broadcast its 
value 

 Agglomerate using rowwise interleaved 
striped decomposition 
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Interleaved Decompositions 

Rowwise interleaved 

striped decomposition 

Columnwise interleaved 

striped decomposition 
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Complexity Analysis 

 Each process performs about n / (2p) 

iterations of loop j in all 

 A total of n -1 iterations in all 

 Computational complexity: (n2/p) 

 One broadcast per iteration 

 Communication complexity: (n log p) 
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Gaussian Elimination 

 Used to solve Ax = b when A is dense 

 Reduces Ax = b to upper triangular system 

Tx = c 

 Back substitution can then solve Tx = c 

for x 
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Gaussian Elimination 

4x0 +6x1 +2x2 – 2x3 = 8 

2x0 +5x2 – 2x3 = 4 

–4x0 – 3x1 – 5x2 +4x3 = 1 

8x0 +18x1 – 2x2 +3x3 = 40 
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Gaussian Elimination 

4x0 +6x1 +2x2 – 2x3 = 8 

  +4x2 – 1x3 = 0 

  +3x1 – 3x2 +2x3 = 9 

  +6x1 – 6x2 +7x3 = 24 

– 3x1 
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Gaussian Elimination 

4x0 +6x1 +2x2 – 2x3 = 8 

  +4x2 – 1x3 = 0 

    1x2 +1x3 = 9 

    2x2 +5x3 = 24 

– 3x1 
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Gaussian Elimination 

4x0 +6x1 +2x2 – 2x3 = 8 

  +4x2 – 1x3 = 0 

    1x2 +1x3 = 9 

      3x3 = 6 

– 3x1 
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Iteration of Gaussian Elimination 

Elements that will not be changed

Elements that will be changed

Pivot row

Elements already driven to 0

i

i
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Numerical Stability Issues 

 If pivot element close to zero, significant 
roundoff errors can result 

 Gaussian elimination with partial pivoting 
eliminates this problem 

 In step i we search rows i through n-1 for 
the row whose column i element has the 
largest absolute value 

 Swap (pivot) this row with row i 
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Row-oriented Parallel Algorithm 

 Associate primitive task with each row of A and 

corresponding elements of x and b 

 A kind of reduction needed to find the identity of 

the pivot row 

 Tournament: want to determine identity of row 

with largest value, rather than largest value itself 

 Could be done with two all-reductions 

 MPI provides a simpler, faster mechanism 
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MPI_MAXLOC, MPI_MINLOC 

 MPI provides reduction operators 

MPI_MAXLOC, MPI_MINLOC 

 Provide datatype representing a (value, 

index) pair 
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MPI (value,index) Datatypes 

MPI_Datatype Meaning 

MPI_2INT Two ints 

MPI_DOUBLE_INT A double followed by an int 

MPI_FLOAT_INT A float followed by an int 

MPI_LONG_INT A long followed by an int 

MPI_LONG_DOUBLE_INT A long double followed by 

an int 

MPI_SHORT_INT A short followed by an int 
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Example Use of MPI_MAXLOC 

struct { 

   double value; 

   int    index; 

} local, global; 

... 

local.value = fabs(a[j][i]); 

local.index = j; 

... 

MPI_Allreduce (&local, &global, 1, 

   MPI_DOUBLE_INT, MPI_MAXLOC, 

   MPI_COMM_WORLD); 
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Second Communication per 

Iteration 

j

i

picked

k

a[picked][k]

a[picked][i]

a[j][i]

a[j][k]
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Communication Complexity 

 Complexity of tournament: (log p) 

 Complexity of broadcasting pivot row: 

(n log p) 

 A total of n - 1 iterations 

 Overall communication complexity: 

(n2 log p) 
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Column-oriented Algorithm 

 Associate a primitive task with each column of A 
and another primitive task for b 

 During iteration i task controlling column i 
determines pivot row and broadcasts its identity 

 During iteration i task controlling column i must 
also broadcast column i to other tasks 

 Agglomerate tasks in an interleaved fashion to 
balance workloads 

 Isoefficiency same as row-oriented algorithm 
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Comparison of Two Algorithms 

 Both algorithms evenly divide workload 

 Both algorithms do a broadcast each iteration 

 Difference: identification of pivot row 

 Row-oriented algorithm does search in parallel 
but requires all-reduce step 

 Column-oriented algorithm does search 
sequentially but requires no communication 

 Row-oriented superior when n relatively larger 
and p relatively smaller 



Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 

Problems with These Algorithms 

 They break parallel execution into 

computation and communication phases 

 Processes not performing computations 

during the broadcast steps 

 Time spent doing broadcasts is large 

enough to ensure poor scalability 
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Pipelined, Row-Oriented Algorithm 

 Want to overlap communication time with 

computation time 

 We could do this if we knew in advance the 

row used to reduce all the other rows. 

 Let’s pivot columns instead of rows! 

 In iteration i we can use row i to reduce the 

other rows. 
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Communication Pattern 

0 

2 

1 
3 

Row 0 

Reducing Using 

Row 0 
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Communication Pattern 
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Analysis 

 Total computation time: (n3/p) 

 Total message transmission time: (n2) 

 When n large enough, message transmission 

time completely overlapped by computation 

time 

 Message start-up not overlapped: (n) 

 Parallel overhead: (np) 
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Sparse Systems 

 Gaussian elimination not well-suited for 

sparse systems 

 Coefficient matrix gradually fills with 

nonzero elements 

 Result 

 Increases storage requirements 

 Increases total operation count 
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Example of “Fill” 



Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 

Iterative Methods 

 Iterative method: algorithm that generates a 

series of approximations to solution’s value 

 Require less storage than direct methods 

 Since they avoid computations on zero 

elements, they can save a lot of 

computations 
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Jacobi Method 
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Values of elements of vector x at iteration k+1 

depend upon values of vector x at iteration k 

 

Gauss-Seidel method: Use latest version 

available of xi 
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Jacobi Method Iterations 
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Rate of Convergence 

 Even when Jacobi method and Gauss-Seidel 

methods converge on solution, rate of 

convergence often too slow to make them 

practical 

 We will move on to an iterative method 

with much faster convergence 
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Conjugate Gradient Method 

 A is positive definite if for every nonzero vector x 
and its transpose xT, the product xTAx > 0 

 If A is symmetric and positive definite, then the 
function 

 

    

    has a unique minimizer that is solution to Ax = b 

 Conjugate gradient is an iterative method that 
solves Ax = b by minimizing q(x) 

cbxAxxxq TT 
2
1)(
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Conjugate Gradient Convergence 

4
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1
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x
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x Finds value of 

n-dimensional solution 

in at most n iterations 
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Conjugate Gradient 

Computations 

 Matrix-vector multiplication 

 Inner product (dot product) 

 Matrix-vector multiplication has higher 

time complexity 

 Must modify previously developed 

algorithm to account for sparse matrices 
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Rowwise Block Striped 

Decomposition of a Symmetrically 

Banded Matrix 

(a) (b)

Matrix 

Decomposition 
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Representation of Vectors 

 Replicate vectors 

 Need all-gather step after matrix-vector 
multiply 

 Inner product has time complexity (n) 

 Block decomposition of vectors 

 Need all-gather step before matrix-vector 
multiply 

 Inner product has time complexity 
(n/p + log p) 
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Summary 

 Solving systems of linear equations 

Direct methods 

 Iterative methods 

 Parallel designs for 

Back substitution 

Gaussian elimination 

Conjugate gradient method 


