All-Pairs Shortest Paths - Floyd's Algorithm

Parallel and Distributed Computing

Department of Computer Science and Engineering (DEI) Instituto Superior Técnico

November 6, 2012

CPD (DEI / IST)

Parallel and Distributed Computing - 14

• All-Pairs Shortest Paths, Floyd's Algorithm

- Partitioning
- Input / Output
- Implementation and Analysis
- Benchmarking

- 一司

.∃ >

All Pairs Shortest Paths

Given a weighted, directed graph G(V, E), determine the shortest path between any two nodes in the graph.

All Pairs Shortest Paths

Given a weighted, directed graph G(V, E), determine the shortest path between any two nodes in the graph.

All Pairs Shortest Paths

Given a weighted, directed graph G(V, E), determine the shortest path between any two nodes in the graph.

$$\begin{bmatrix} 0 & -2 & -5 & 4 \\ \infty & 0 & 9 & \infty \\ 7 & \infty & 0 & -3 \\ 8 & 0 & 6 & 0 \end{bmatrix}$$

Adjacency Matrix

The Floyd-Warshall Algorithm

Recursive solution based on *intermediate* vertices.

Let p_{ij} be the minimum-weight path from node *i* to node *j* among paths that use a subset of intermediate vertices $\{0, \ldots, k-1\}$.

The Floyd-Warshall Algorithm

Recursive solution based on intermediate vertices.

Let p_{ij} be the minimum-weight path from node *i* to node *j* among paths that use a subset of intermediate vertices $\{0, \ldots, k-1\}$.

Consider an additional node k:

 $k \not\in p_{ij}$

```
then p_{ij} is shortest path considering the subset of intermediate vertices \{0, \ldots, k\}.
```

$k \in p_{ij}$

then we can decompose p_{ij} as $i \stackrel{p_{ik}}{\leadsto} k \stackrel{p_{kj}}{\leadsto} j$, where subpaths p_{ik} and p_{kj} have intermediate vertices in the set $\{0, \ldots, k-1\}$.

The Floyd-Warshall Algorithm

Recursive solution based on intermediate vertices.

Let p_{ij} be the minimum-weight path from node *i* to node *j* among paths that use a subset of intermediate vertices $\{0, \ldots, k-1\}$.

Consider an additional node k:

 $k \not\in p_{ij}$

then p_{ij} is shortest path considering the subset of intermediate vertices $\{0, \ldots, k\}$.

$k \in p_{ij}$

then we can decompose p_{ij} as $i \stackrel{p_{ik}}{\leadsto} k \stackrel{p_{kj}}{\leadsto} j$, where subpaths p_{ik} and p_{kj} have intermediate vertices in the set $\{0, \ldots, k-1\}$.

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = -1\\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{if } k \ge 0 \end{cases}$$

1. for
$$k \leftarrow 0$$
 to $|V| - 1$
2. for $i \leftarrow 0$ to $|V| - 1$
3. for $j \leftarrow 0$ to $|V| - 1$
4. $d[i,j] \leftarrow \min(d[i,j], d[i,k] + d[k,j])$

1. for
$$k \leftarrow 0$$
 to $|V| - 1$
2. for $i \leftarrow 0$ to $|V| - 1$
3. for $j \leftarrow 0$ to $|V| - 1$
4. $d[i,j] \leftarrow \min(d[i,j], d[i,k] + d[k,j])$

Complexity?

CPD (DEI / IST)

1. for
$$k \leftarrow 0$$
 to $|V| - 1$
2. for $i \leftarrow 0$ to $|V| - 1$
3. for $j \leftarrow 0$ to $|V| - 1$
4. $d[i,j] \leftarrow \min(d[i,j], d[i,k] + d[k,j])$

Complexity: $\Theta(|V|^3)$

Partitioning

Partitioning:

CPD (DEI / IST)

・ロト ・ 日 ・ ・ 目 ト ・

Partitioning:

Domain decomposition: divide adjacency matrix into its $|V|^2$ elements (computation in the inner loop is primitive task).

→ ∃ →

э

• • • • • • • • • • • •

Let k = 1. Row sweep, i = 2.

→ Ξ →

Image: Image:

Let k = 1. Row sweep, i = 2.

CPD (DEI / IST)

 ▲ ■
 ■
 ∽ < ⊂</th>

 2012-11-06
 7 / 25

→ Ξ →

Image: Image:

Let k = 1. Row sweep, i = 2.

→ ∃ →

Let k = 1. Row sweep, i = 2.

CPD (DEI / IST)

 ▲ ■
 ■
 ∽ < ⊂</th>

 2012-11-06
 7 / 25

→ Ξ →

Let k = 1. Column sweep, j = 3.

CPD (DEI / IST)

Image: Image:

< ∃ > <

 ▲ ■
 ■
 ∽ < ⊂</th>

 2012-11-06
 7 / 25

Let k = 1. Column sweep, j = 3.

CPD (DEI / IST)

Parallel and Distributed Computing - 14

・ロト ・ 日 ト ・ ヨ ト ・

Let k = 1. Column sweep, j = 3.

Image: Image:

→ ∃ →

Let k = 1. Column sweep, j = 3.

→ ∃ →

In iteration k, every task in row/column k broadcasts its value within task row/column.

<= ≥ > <

Agglomeration and Mapping

Agglomeration and Mapping:

CPD (DEI / IST)

Agglomeration and Mapping

Agglomeration and Mapping:

- create one task per MPI process
- agglomerate tasks to minimize communication

Possible decompositions: row-wise vs column-wise block striped (n = 11, p = 3).

Relative merit?

Agglomeration and Mapping

Agglomeration and Mapping:

- create one task per MPI process
- agglomerate tasks to minimize communication

Possible decompositions: row-wise vs column-wise block striped (n = 11, p = 3).

Relative merit?

- Column-wise block striped
 - Broadcast within columns eliminated
- Row-wise block striped
 - Broadcast within rows eliminated
 - Reading, writing and printing matrix simpler

Comparing Decompositions

Choose row-wise block striped decomposition.

Some tasks get
$$\left\lceil \frac{n}{p} \right\rceil$$
 rows, other get $\left\lfloor \frac{n}{p} \right\rfloor$.

Which task gets which size?

Comparing Decompositions

Choose row-wise block striped decomposition.

Some tasks get
$$\left\lceil \frac{n}{p} \right\rceil$$
 rows, other get $\left\lfloor \frac{n}{p} \right\rfloor$.

Which task gets which size?

Distributed approach: distribute larger blocks evenly. First element of task *i*: $\left\lfloor i\frac{n}{p} \right\rfloor$ Last element of task *i*: $\left\lfloor (i+1)\frac{n}{p} \right\rfloor - 1$ Task owner of element *j*: $\left\lfloor (p(j+1)-1)/n \right\rfloor$ Array allocation:

Matrix allocation:

Array allocation:

Matrix allocation:

CPD (DEI / IST)

Array allocation:

Matrix allocation:

Why don't we read the whole file and then execute a MPI_Scatter?

Point-to-point Communication

- involves a pair of processes
 - one process sends a message
 - other process receives the message

-

)

int	MPI_Send (
	void	*message,
	int	count,
	MPI_Datatype	datatype,
	int	dest,
	int	tag,
	MPI_Comm	comm

メロト メポト メモト メモト

)

int MPI_Recv (void *message, int count, MPI_Datatype datatype, int source, int tag, MPI_Comm comm, MPI_Status *status

-

<回ト < 回ト <

Coding Send / Receive

```
. . .
if (id == j) {
    . . .
   Receive from i
    . . .
}
. . .
if (id == i) {
    . . .
   Send to j
    . . .
}
. . .
```

CPD (DEI / IST)

イロト イ団ト イヨト イヨト

Coding Send / Receive

```
. . .
if (id == j) {
    . . .
   Receive from i
    . . .
}
. . .
if (id == i) {
    . . .
   Send to j
    . . .
}
. . .
```

Receive is before Send! Why does this work?

CPD (DEI / IST)

< □ > < ---->

.⊒ . ►

CPD (DEI / IST)

Parallel and Distributed Computing – 14

- 一司

MPI_Send

> < ≣ > ≣ ∽ < < 2012-11-06 16 / 25

- 一司

→ ∃ →

MPI_Send

> < ≣ > ≣ ∽ < < 2012-11-06 16 / 25

< 一型

- **4 ∃ ≻** 4

MPI Send

MPI_Recv

</₽> < ∃ > <

3 2012-11-06 16 / 25

э

• function blocks until message buffer free

3 ×

• function blocks until message buffer free

- message buffer is free when
 - message copied to system buffer, or
 - message transmitted

• function blocks until message buffer free

- message buffer is free when
 - message copied to system buffer, or
 - message transmitted

- typical scenario
 - message copied to system buffer
 - transmission overlaps computation

• function blocks until message in buffer

• function blocks until message in buffer

• if message never arrives, function never returns!

Deadlock

Process waiting for a condition that will never become true.

Easy to write send/receive code that deadlocks:

• two processes: both receive before send

Deadlock

Process waiting for a condition that will never become true.

Easy to write send/receive code that deadlocks:

- two processes: both receive before send
- send tag doesn't match receive tag

Deadlock

Process waiting for a condition that will never become true.

Easy to write send/receive code that deadlocks:

- two processes: both receive before send
- send tag doesn't match receive tag
- process sends message to wrong destination process

C Code

```
void compute_shortest_paths (int id, int p, double **a, int n)
ſ
   int i, j, k;
   int offset; /* Local index of broadcast row */
   int root; /* Process controlling row to be bcast */
  double* tmp; /* Holds the broadcast row */
  tmp = (double *) malloc (n * sizeof(double));
   for (k = 0; k < n; k++) {
      root = BLOCK_OWNER(k,p,n);
      if (root == id) {
         offset = k - BLOCK_LOW(id,p,n);
        for (j = 0; j < n; j++)
           tmp[j] = a[offset][j];
      }
      MPI_Bcast (tmp, n, MPI_DOUBLE, root, MPI_COMM_WORLD);
      for (i = 0; i < BLOCK_SIZE(id,p,n); i++)</pre>
        for (j = 0; j < n; j++)
           a[i][j] = MIN(a[i][j],a[i][k]+tmp[j]);
   3
   free (tmp);
}
```

.

Let α be the time to compute an iteration. Sequential execution time?

- 一司

Let α be the time to compute an iteration. Sequential execution time: αn^3

Computation time of parallel program?

Let α be the time to compute an iteration. Sequential execution time: αn^3

Computation time of parallel program: $\alpha n \left[\frac{n}{p}\right] n$

- innermost loop executed *n* times
- middle loop executed at most $\left\lceil \frac{n}{p} \right\rceil$ times
- outer loop executed *n* times

Number of broadcasts?

CPD (DEI / IST)

Let α be the time to compute an iteration. Sequential execution time: αn^3

Computation time of parallel program: $\alpha n \left[\frac{n}{p} \right] n$

- innermost loop executed *n* times
- middle loop executed at most $\left\lceil \frac{n}{p} \right\rceil$ times
- outer loop executed *n* times

Number of broadcasts: n

CPD (DEI / IST)

• one per outer loop iteration

Broadcast time?

Let α be the time to compute an iteration. Sequential execution time: αn^3

Computation time of parallel program: $\alpha n \left[\frac{n}{p} \right] n$

- innermost loop executed n times
- middle loop executed at most $\left\lceil \frac{n}{p} \right\rceil$ times
- outer loop executed *n* times

Number of broadcasts: n

• one per outer loop iteration

Broadcast time: $\lceil \log p \rceil \left(\lambda + \frac{4n}{\beta} \right)$

- each broadcast has [log p] steps
- λ is the message latency
- β is the bandwidth
- each broadcast sends 4n bytes

Let α be the time to compute an iteration. Sequential execution time: αn^3

Computation time of parallel program: $\alpha n \left[\frac{n}{p} \right] n$

- innermost loop executed n times
- middle loop executed at most $\left\lceil \frac{n}{p} \right\rceil$ times
- outer loop executed *n* times

Number of broadcasts: n

• one per outer loop iteration

Broadcast time: $\lceil \log p \rceil \left(\lambda + \frac{4n}{\beta} \right)$

- each broadcast has [log p] steps
- λ is the message latency
- β is the bandwidth
- each broadcast sends 4n bytes

Expected parallel execution time:

CPD (DEI / IST)

 $\alpha n^2 \left\lceil \frac{n}{p} \right\rceil + n \left\lceil \log p \right\rceil \left(\lambda + \frac{4n}{\beta} \right) =$

Previous expression will overestimate parallel execution time: after the first iteration, broadcast transmission time overlaps with computation of next row.

Expected parallel execution time:

$$\alpha n^2 \left\lceil \frac{n}{p} \right\rceil + n \lceil \log p \rceil \lambda + \lceil \log p \rceil \frac{4n}{\beta}$$

Experimental measurements:

$$lpha=25,5$$
 ns
 $\lambda=250~\mu{
m s}$
 $eta=10^7~{
m bytes/s}$

Experimental Results

Procs	Ideal	Predict 1	Predict 2	Actual
1	25,5	25,5	25,5	25,5
2	12,8	13,4	13,0	13,9
3	8,5	9,5	8,9	9,6
4	6,4	7,7	6,9	7,3
5	5,1	6,6	5,7	6,0
6	4,3	5,9	4,9	5,2
7	3,6	5,5	4,3	4,5
8	3,2	5,1	3,9	4,0

CPD (DEI / IST)

Parallel and Distributed Computing - 14

э 23 / 25 2012-11-06

ъ

• All-Pairs Shortest Paths, Floyd's Algorithm

- Partitioning
- Input / Output
- Implementation and Analysis
- Benchmarking

.∃ →

• Performance metrics

2 2012-11-06 25 / 25

э

・ロト ・ 日 ・ ・ 目 ト ・