All-Pairs Shortest Paths - Floyd's Algorithm

Parallel and Distributed Computing

Department of Computer Science and Engineering (DEI)
Instituto Superior Técnico

November 6, 2012

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06 1/25

@ All-Pairs Shortest Paths, Floyd's Algorithm

Partitioning

Input / Output

o Implementation and Analysis

Benchmarking

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06 2/25

Shortest Paths

All Pairs Shortest Paths

Given a weighted, directed graph G(V/, E), determine the shortest path
between any two nodes in the graph.

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06 3/25

Shortest Paths

All Pairs Shortest Paths

Given a weighted, directed graph G(V/, E), determine the shortest path
between any two nodes in the graph.

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06 3/25

Shortest Paths

All Pairs Shortest Paths

Given a weighted, directed graph G(V/, E), determine the shortest path
between any two nodes in the graph.

0 -2 -5 4
oo 0 9 o
7 oo 0 -3
8 0 6 O

Adjacency Matrix

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06

The Floyd-Warshall Algorithm

Recursive solution based on intermediate vertices.

Let p;; be the minimum-weight path from node i to node j among paths
that use a subset of intermediate vertices {0,..., k — 1}.

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06 4 /25

The Floyd-Warshall Algorithm

Recursive solution based on intermediate vertices.

Let p;; be the minimum-weight path from node i to node j among paths
that use a subset of intermediate vertices {0,..., k — 1}.

Consider an additional node k:

k & pjj

then pj; is shortest path considering the subset of intermediate
vertices {0, ..., k}.

k € pj

. Pil Pkj .
then we can decompose pj;; as i RE K vki_/, where subpaths pjc and py;
have intermediate vertices in the set {0,..., k — 1}.

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06 4 /25

The Floyd-Warshall Algorithm

Recursive solution based on intermediate vertices.

Let p;; be the minimum-weight path from node i to node j among paths
that use a subset of intermediate vertices {0,..., k — 1}.
Consider an additional node k:
k & pij
then pj; is shortest path considering the subset of intermediate
vertices {0, ..., k}.
k € pj

. Pil Pkj .
then we can decompose pj;; as i RE K vki_/, where subpaths pjc and py;
have intermediate vertices in the set {0,..., k — 1}.

Wi if k=-1
dk) — ! (k—1) (k—1) (k—1)
i min (a7, dlf) + dff V) if k>0

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06 4 /25

The Floyd-Warshall Algorithm

1. for k< 0to|V|—1

2. fori<0to|V|—-1
3. forj<0to|V|—1
4. dli,j] < min(d[i, j], d[i, k] + d[k,j])

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06 5/25

The Floyd-Warshall Algorithm

1. for k< 0to|V|—1

2. fori<0to|V|—-1

3. forj<0to|V|—1

4. dli,j] < min(d[i, j], d[i, k] + d[k,j])
Complexity?

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06 5/25

The Floyd-Warshall Algorithm

1. for k< 0to|V|—1

2. fori<0to|V|—-1
3. forj<0to|V|—1
4. dli,j] < min(d[i, j], d[i, k] + d[k,j])

Complexity: O(|V|3)

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06 5/25

Partitioning

Partitioning:

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-

Partitioning

Partitioning:

Domain decomposition: divide adjacency matrix into its |V/|? elements
(computation in the inner loop is primitive task).

0000
0000
0000
0000

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06 6 /25

Communication

Communication:

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06 7/25

Communication

Communication:

Let Kk = 1. Row sweep, i = 2.

of ¥ Yo
of Yeo¥e
0000
0000

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06 7/25

Communication

Communication:

Let Kk = 1. Row sweep, i = 2.

OX & 2O
O OO0
O OO0

O OO0

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06 7/25

Communication

Communication:

Let Kk = 1. Row sweep, i = 2.

O @O
O OO0

0000
of YeJeo

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06 7/25

Communication

Communication:

Let Kk = 1. Row sweep, i = 2.

O OO0
O @O0
OO0 OO0
O @O

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06 7/25

Communication

Communication:

Let k = 1. Column sweep, j = 3.

@
O
OO0 @

O OO0
O OO
O OO0

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06 7/25

Communication

Communication:

Let k = 1. Column sweep, j = 3.

O OO0
OO0 @O
O OO
OO0 @O

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06 7/25

Communication

Communication:

Let k = 1. Column sweep, j = 3.

O OO0
O @O0
OO0 OO0
O N 2O

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06 7/25

Communication

Communication:

Let k = 1. Column sweep, j = 3.

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06 7/25

Communication

Communication:

In iteration k, every task in row/column k broadcasts its value within task
row /column.

O OO0 O OO0
O OO0 O OO0
O OO0 O OO0
OO00O0 O00O0

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06 7/25

Agglomeration and Mapping

Agglomeration and Mapping:

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06 8/25

Agglomeration and Mapping

Agglomeration and Mapping:

@ create one task per MPI process

@ agglomerate tasks to minimize communication

Possible decompositions: row-wise vs column-wise block striped (n =11, p = 3).

Relative merit?

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06 8/25

Agglomeration and Mapping

Agglomeration and Mapping:

@ create one task per MPI process

@ agglomerate tasks to minimize communication

Possible decompositions: row-wise vs column-wise block striped (n =11, p = 3).

Relative merit?
@ Column-wise block striped
e Broadcast within columns eliminated
@ Row-wise block striped

o Broadcast within rows eliminated
o Reading, writing and printing matrix simpler

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06 8/25

Comparing Decompositions

Choose row-wise block striped decomposition.

Some tasks get {ﬂ rows, other get L%J

Which task gets which size?

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06 9/25

Comparing Decompositions

Choose row-wise block striped decomposition.

Some tasks get {ﬂ rows, other get BJ

Which task gets which size?

Distributed approach: distribute larger blocks evenly.

First element of task i: [igJ

Last element of task i: [(/ + l)gJ -1

Task owner of element j: [(p(j +1) —1)/n]

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06 9/25

Dynamic Matrix Allocation

Array allocation:

Stack

Matrix allocation:

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06 10 / 25

Dynamic Matrix Allocation

Array allocation:

Stack

Matrix allocation:

Stack

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06 10 / 25

Dynamic Matrix Allocation

Array allocation:

Stack

Matrix allocation:

Stack

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06 10 / 25

Reading the Graph Matrix

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06 11 /25

Reading the Graph Matrix

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06 11 /25

Reading the Graph Matrix

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06 11 /25

Reading the Graph Matrix

re [| [[
\
B | e

0 2

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06 11 /25

Reading the Graph Matrix

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06 11 /25

Reading the Graph Matrix

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06 11 /25

Reading the Graph Matrix

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06 11 /25

Reading the Graph Matrix

Why don't we read the whole file and then execute a MPI_Scatter?

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06 11 /25

Point-to-point Communication

@ involves a pair of processes

@ one process sends a message
e other process receives the message

Time

CPD (DEI / IST)

Task h Task i Task j

Compute

Compute

Sendtoj

Wait

Compute

Receive from i
Compute

Compute

Parallel and Distributed Computing — 14

2012-11-06

MPI_Send

int MPI_Send (

void *message,
int count,
MPI_Datatype datatype,
int dest,

int tag,
MPI_Comm comm

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06

MPI Recv

int MPI_Recv (

void *message,
int count,
MPI_Datatype datatype,
int source,
int tag,
MPI_Comm comm,

MPI_Status *status

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06

Coding Send / Receive

if (id == §) |

Receive from i

if (id == 1) {

Send to j

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06 15 / 25

Coding Send / Receive

if (id == §) |

Receive from i

if (id == 1) {

Send to j

Receive is before Send! Why does this work?

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06 15 / 25

Sending Process

Program
Memory

[T

System
Buffer

[T

Receiving Process

CPD (DEI / IST)

System
Buffer

[T

Program
Memory

[T

Parallel and Distributed Computing — 14

2012-11-06

Internals of Send and Receive

16 / 25

Internals of Send and Receive

Sending Process Receiving Process
Program System System Program
Memory Buffer Buffer Memory
[TT11T] — [TLTTT]

[TTTTT] [TTT1TI
MPI_Send

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06 16 / 25

Internals of Send and Receive

Sending Process Receiving Process
Program System System Program
Memory Buffer Buffer Memory
[TT11T] — [TLTTT]

[TTT1T] [TTT1TI
MPI_Send

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06 16 / 25

Internals of Send and Receive

Sending Process Receiving Process
Program System System Program
Memory Buffer Buffer Memory
[TTTIT] — [T111T]

(11111 [TTT1T]
MPI_Send MPI_Recv

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06

Return from MPI_Send

o function blocks until message buffer free

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06 17 / 25

Return from MPI _Send

o function blocks until message buffer free

@ message buffer is free when

e message copied to system buffer, or
e message transmitted

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06 17 / 25

Return m MPI Send

o function blocks until message buffer free

@ message buffer is free when

e message copied to system buffer, or
e message transmitted

@ typical scenario

e message copied to system buffer
e transmission overlaps computation

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06

Return from MPI _Recv

@ function blocks until message in buffer

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06 18 / 25

Return from MPI _Recv

@ function blocks until message in buffer

o if message never arrives, function never returns!

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06 18 / 25

Deadlock

Deadlock

Process waiting for a condition that will never become true.

Easy to write send/receive code that deadlocks:

@ two processes: both receive before send

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06 19 / 25

Deadlock

Deadlock

Process waiting for a condition that will never become true.

Easy to write send/receive code that deadlocks:

@ two processes: both receive before send

@ send tag doesn’'t match receive tag

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06

Deadlock

Deadlock

Process waiting for a condition that will never become true.

Easy to write send/receive code that deadlocks:

@ two processes: both receive before send
@ send tag doesn’'t match receive tag

@ process sends message to wrong destination process

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06

C Code

void compute_shortest_paths (int id, int p, double **a, int n)
{
int i, j, k;
int offset; /* Local index of broadcast row */
int root; /* Process controlling row to be bcast */
double* tmp; /* Holds the broadcast row */

tmp = (double *) malloc (n * sizeof(double));
for (k = 0; k < n; k++) {
root = BLOCK_OWNER(k,p,n);
if (root == id) {
offset = k - BLOCK_LOW(id,p,n);
for (j = 0; j < m; j++)
tmp[j] = aloffset][jl;
}
MPI_Bcast (tmp, n, MPI_DOUBLE, root, MPI_COMM_WORLD) ;
for (i = 0; i < BLOCK_SIZE(id,p,n); i++)
for (j = 0; j < n; j++)
alil[j] = MIN(alil[j],ali] [k]1+tmp[j]1);
}
free (tmp);

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06

Analysis of the Parallel Algorithm

Let a be the time to compute an iteration.
Sequential execution time?

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06 21 /25

Analysis of the Parallel Algorithm

Let a be the time to compute an iteration.
Sequential execution time: an?

Computation time of parallel program?

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06 21 /25

Analysis of the Parallel Algorithm

Let a be the time to compute an iteration.
Sequential execution time: an?

Computation time of parallel program: an [g—‘ n
@ innermost loop executed n times
@ middle loop executed at most [g-‘ times

@ outer loop executed n times

Number of broadcasts?

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06

Analysis of the Parallel Algorithm

Let a be the time to compute an iteration.
Sequential execution time: an?

Computation time of parallel program: an [g—‘ n
@ innermost loop executed n times
@ middle loop executed at most [g-‘ times

@ outer loop executed n times
Number of broadcasts: n

@ one per outer loop iteration

Broadcast time?

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06

Analysis of the Parallel Algorithm

Let a be the time to compute an iteration.
Sequential execution time: an?

Computation time of parallel program: an [g—‘ n
@ innermost loop executed n times
@ middle loop executed at most [g-‘ times

@ outer loop executed n times
Number of broadcasts: n

@ one per outer loop iteration
Broadcast time: [log p| ()\ + %”)

each broadcast has [log p]| steps
A is the message latency
B is the bandwidth

°
°
°
@ each broadcast sends 4n bytes

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06

Analysis of the Parallel Algorithm

Let a be the time to compute an iteration.
Sequential execution time: an?

Computation time of parallel program: an [g—‘ n
@ innermost loop executed n times
@ middle loop executed at most [g-‘ times

@ outer loop executed n times
Number of broadcasts: n

@ one per outer loop iteration
Broadcast time: [log p| ()\ + %”)

each broadcast has [log p]| steps
A is the message latency
B is the bandwidth

@ each broadcast sends 4n bytes
Expected parallel execution time: an? B—‘ + n[log p| ()\ + %)

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06

Analysis of the Parallel Algorithm

Previous expression will overestimate parallel execution time: after the first
iteration, broadcast transmission time overlaps with computation of next
row.

Expected parallel execution time:

4n

an? m + nflog pIA + [log p]

Experimental measurements:
a=25,5ns
A =250 us
B =107 bytes/s

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06

Experimental Results

[Procs “ Ideal [Predict 1 [Predict 2 [Actual]

1 25,5 25,5 25,5 25,5
2 12,8 13,4 13,0 13,9
3 8,5 9,5 8,9 9,6
4 6,4 7,7 6,9 73
5 51 6,6 57 6,0
6 4,3 5,9 4,9 5,2
7 3,6 5,5 4,3 4,5
8 3,2 51 3,9 4,0

200

150

Time (5)

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06 23 /25

Review

@ All-Pairs Shortest Paths, Floyd's Algorithm

Partitioning

Input / Output

o Implementation and Analysis

Benchmarking

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06 24 / 25

Next Class

@ Performance metrics

CPD (DEI / IST) Parallel and Distributed Computing — 14 2012-11-06

	Shortest Paths
	Floyd's Algorithm
	Foster's Methodology
	Parallel Implementation
	Analysis
	Experimental Results

