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Shortest Paths

All Pairs Shortest Paths

Given a weighted, directed graph G (V ,E ), determine the shortest path
between any two nodes in the graph.
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The Floyd-Warshall Algorithm

Recursive solution based on intermediate vertices.

Let pij be the minimum-weight path from node i to node j among paths
that use a subset of intermediate vertices {0, . . . , k − 1}.

Consider an additional node k :

k 6∈ pij

then pij is shortest path considering the subset of intermediate
vertices {0, . . . , k}.

k ∈ pij

then we can decompose pij as i
pik k

pkj
 j , where subpaths pik and pkj

have intermediate vertices in the set {0, . . . , k − 1}.

d
(k)
ij =

{
wij if k = −1

min
(
d

(k−1)
ij , d

(k−1)
ik + d

(k−1)
kj

)
if k ≥ 0
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The Floyd-Warshall Algorithm

1. for k ← 0 to |V | − 1

2. for i ← 0 to |V | − 1

3. for j ← 0 to |V | − 1

4. d [i , j ]← min(d [i , j ], d [i , k] + d [k, j ])

Θ(|V |3)
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Partitioning

Partitioning:

Domain decomposition: divide adjacency matrix into its |V |2 elements
(computation in the inner loop is primitive task).
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Communication

Communication:

Let k = 1. Row sweep, i = 2.
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Communication

Communication:

Let k = 1. Column sweep, j = 3.
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Communication

Communication:

In iteration k, every task in row/column k broadcasts its value within task
row/column.
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Agglomeration and Mapping

Agglomeration and Mapping:

create one task per MPI process

agglomerate tasks to minimize communication

Possible decompositions: row-wise vs column-wise block striped (n = 11, p = 3).

Relative merit?

Column-wise block striped

Broadcast within columns eliminated

Row-wise block striped

Broadcast within rows eliminated
Reading, writing and printing matrix simpler
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Comparing Decompositions

Choose row-wise block striped decomposition.

Some tasks get
⌈
n
p

⌉
rows, other get

⌊
n
p

⌋
.

Which task gets which size?

Distributed approach: distribute larger blocks evenly.

First element of task i :
⌊
i np

⌋
Last element of task i :

⌊
(i + 1)np

⌋
− 1

Task owner of element j : b(p(j + 1)− 1) /nc
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Dynamic Matrix Allocation

Array allocation:
Stack

A

Heap

Matrix allocation:

Stack

_M

Heap
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Reading the Graph Matrix

File

0 1 2

Why don’t we read the whole file and then execute a MPI Scatter?
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Point-to-point Communication

involves a pair of processes

one process sends a message
other process receives the message

Task h Task i Task j

Compute

Send to j

Receive from i

Wait

Compute

Compute

Compute

Compute

Ti
m

e
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MPI Send

int MPI_Send (

void *message,

int count,

MPI_Datatype datatype,

int dest,

int tag,

MPI_Comm comm

)
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MPI Recv

int MPI_Recv (

void *message,

int count,

MPI_Datatype datatype,

int source,

int tag,

MPI_Comm comm,

MPI_Status *status

)
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Coding Send / Receive

...

if (id == j) {

...

Receive from i

...

}

...

if (id == i) {

...

Send to j

...

}

...

Receive is before Send! Why does this work?
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Internals of Send and Receive

Sending Process

MPI_Send

Program
Memory

System
Buffer

Receiving Process

MPI_Recv

Program
Memory

System
Buffer
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Return from MPI Send

function blocks until message buffer free

message buffer is free when

message copied to system buffer, or
message transmitted

typical scenario

message copied to system buffer
transmission overlaps computation
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Return from MPI Recv

function blocks until message in buffer

if message never arrives, function never returns!
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Deadlock

Deadlock

Process waiting for a condition that will never become true.

Easy to write send/receive code that deadlocks:

two processes: both receive before send

send tag doesn’t match receive tag

process sends message to wrong destination process
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C Code

void compute_shortest_paths (int id, int p, double **a, int n)

{

int i, j, k;

int offset; /* Local index of broadcast row */

int root; /* Process controlling row to be bcast */

double* tmp; /* Holds the broadcast row */

tmp = (double *) malloc (n * sizeof(double));

for (k = 0; k < n; k++) {

root = BLOCK_OWNER(k,p,n);

if (root == id) {

offset = k - BLOCK_LOW(id,p,n);

for (j = 0; j < n; j++)

tmp[j] = a[offset][j];

}

MPI_Bcast (tmp, n, MPI_DOUBLE, root, MPI_COMM_WORLD);

for (i = 0; i < BLOCK_SIZE(id,p,n); i++)

for (j = 0; j < n; j++)

a[i][j] = MIN(a[i][j],a[i][k]+tmp[j]);

}

free (tmp);

}
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Analysis of the Parallel Algorithm

Let α be the time to compute an iteration.
Sequential execution time?

Computation time of parallel program: αn
⌈
n
p

⌉
n

innermost loop executed n times

middle loop executed at most
⌈
n
p

⌉
times

outer loop executed n times

Number of broadcasts: n

one per outer loop iteration

Broadcast time: dlog pe
(
λ+ 4n

β

)
each broadcast has dlog pe steps

λ is the message latency

β is the bandwidth

each broadcast sends 4n bytes

Expected parallel execution time: αn2
⌈
n
p

⌉
+ ndlog pe

(
λ+ 4n

β

)
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Analysis of the Parallel Algorithm

Previous expression will overestimate parallel execution time: after the first
iteration, broadcast transmission time overlaps with computation of next
row.

Expected parallel execution time:

αn2

⌈
n

p

⌉
+ ndlog peλ+ dlog pe4n

β

Experimental measurements:

α = 25, 5 ns

λ = 250 µs

β = 107 bytes/s
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Experimental Results

Procs Ideal Predict 1 Predict 2 Actual

1 25,5 25,5 25,5 25,5
2 12,8 13,4 13,0 13,9
3 8,5 9,5 8,9 9,6
4 6,4 7,7 6,9 7,3
5 5,1 6,6 5,7 6,0
6 4,3 5,9 4,9 5,2
7 3,6 5,5 4,3 4,5
8 3,2 5,1 3,9 4,0
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Next Class

Performance metrics
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