
Parallel Programming

Parallel algorithms

Combinatorial Search



Some Combinatorial Search Methods

• Divide and conquer

• Backtrack search

• Branch and bound

• Game tree search (minimax, alpha-beta)
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Terminology

• Combinatorial algorithm: computation 

performed on discrete structure

• Combinatorial search: finding one or more 

optimal or suboptimal solutions in a 

defined problem space

• Kinds of combinatorial search problem

• Decision problem (exists (find 1 solution); 

doesn’t exist)

• Optimization problem (the best solution)
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Examples of Combinatorial Search

• Laying out circuits in VLSI

• Find the smallest area

• Planning motion of robot arms

• Smallest distance to move (with or without 

constraints)

• Assigning crews to airline flights

• Proving theorems

• Playing games
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Search Tree

• Each node represents a problem or sub-

problem

• Root of tree: initial problem to be solved

• Children of a node created by adding 

constraints (one move from the father)

• AND node: to find solution, must solve 

problems represented by all children

• OR node: to find a solution, solve any of 

the problems represented by the children
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Search Tree (cont.)

• AND tree

• Contains only AND nodes

• Divide-and-conquer algorithms

• OR tree

• Contains only OR nodes

• Backtrack search and branch and bound

• AND/OR tree

• Contains both AND and OR nodes

• Game trees
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Divide and Conquer

• Divide-and-conquer methodology

• Partition a problem into subproblems

• Solve the subproblems

• Combine solutions to subproblems

• Recursive: sub-problems may be solved 

using the divide-and-conquer methodology

• Example: quicksort
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Best for Centralized Multiprocessor

• Unsolved subproblems kept in one shared 

stack

• Processors needing work can access the 

stack

• Processors with extra work can put it on 

the stack

• Effective workload balancing mechanism

• Stack can become a bottleneck as number 

of processors increases
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Multicomputer Divide and Conquer

• Subproblems must be distributed among 

memories of individual processors

• Two designs

• Original problem and final solution stored in 

memory of a single processor

• Both original problem and final solution 

distributed among memories of all processors
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Design 1

• Algorithm has three phases

• Phase 1: problems divided and propagated 

throughout the parallel computer

• Phase 2: processors compute solutions to 

their subproblems

• Phase 3: partial results are combined

• Maximum speedup limited by propagation 

and combining overhead
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Design 2

• Both original problem and final solution 

are distributed among processors’ 

memories

• Eliminates starting up and winding down 

phases of first design

• Allows maximum problem size to increase 

with number of processors

• Used this approach for parallel quicksort 

algorithms

• Challenge: keeping workloads balanced 

among processors
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Backtrack Search

• Uses depth-first search to consider 

alternative solutions to a combinatorial 

search problem

• Recursive algorithm

• Backtrack occurs when

• A node has no children (“dead end”)

• All of a node’s children have been explored
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Example: Crossword Puzzle Creation

• Given

• Blank crossword puzzle

• Dictionary of words and phrases

• Assign letters to blank spaces so that all 

puzzle’s horizontal and vertical “words” 

are from the dictionary

• Halt as soon as a solution is found
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Crossword Puzzle Problem
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Given a blank crossword

puzzle and a dictionary .............  find a way to fill in the puzzle.



A Search Strategy

• Identify longest incomplete word in puzzle 

(break ties arbitrarily)

• Look for a word of that length

• If cannot find such a word, backtrack

• Otherwise, find longest incomplete word 

that has at least one letter assigned 

(break ties arbitrarily)

• Look for a word of that length

• If cannot find such a word, backtrack

• Recurse until a solution is found or all 

possibilities have been attempted
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State Space Tree

Root of tree is initial, blank puzzle.

Choices for word 1

Choices for word 2

Word 3 choices

etc.
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Backtrack Search
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Backtrack Search
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Backtrack Search
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Backtrack Search
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Cannot find word.

Must backtrack.
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Backtrack Search
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Backtrack Search
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Backtrack Search
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Time and Space Complexity

• Suppose average branching factor in state 

space tree is b

• Searching a tree of depth k requires 

examining

nodes in the worst case (exponential time)

• Amount of memory usually required is (k)
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Parallel Backtrack Search

• First strategy: give each processor a 

subtree

• Suppose p = b
k

• A process searches all nodes to depth k

• It then explores only one of subtrees rooted at 

level k

• If d (depth of search) > 2k, time required by 

each process to traverse first k levels of state 

space tree is negligible
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Parallel Backtrack when p = b
k

Subtree

Searched

by

Process 0

Subtree

Searched

by

Process 1

Subtree

Searched

by
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Subtree

Searched

by

Process 3
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What If p  b
k 

?

• A process can perform sequential search 

to level m (where b
m

> p) of state space 

tree

• Each process explores its share of the 

subtrees rooted by nodes at level m

• As m increases, there are more subtrees 

to divide among processes, which can 

make workloads more balanced

• Increasing m also increases number of 

redundant computations
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Maximum Speedup when p  b
k 

In this example 5 processors are exploring a state space

tree with branching factor 3 and depth 10.
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Disadvantage of Allocating One Subtree per Process

• In most cases state space tree is not 

balanced

• Example: in crossword puzzle problem, 

some word choices lead to dead ends 

quicker than others

• Alternative: make sequential search go 

deeper, so that each process handles 

many subtrees (cyclic allocation)
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Allocating Many Subtrees per Process

2010@FEUP Parallel Algorithms - Combinatorial Search 30

b = 3;  p = 4;  m = 3;  allocation rule  (subtree nr) % p == rank



Backtrack Algorithm
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cutoff_count – nr of nodes at cutoff_depth

cutoff_depth – depth at which subtrees are divided among processes

depth – maximum search depth in the state space tree

moves – records the path to the current node (moves made so far)

p, id – number of processes, process rank

Parallel_Backtrack(node, level)

if (level == depth)

if (node is a solution)

Print_Solution(moves)

else

if (level == cutoff_depth)

cutoff_count ++

if (cutoff_count % p  !=  id)

return

possible_moves = Count_Moves(node)       // nr of possible moves from current node

for i = 1 to possible_moves

node = Make_Move(node, i)

moves[ level ] = i

Parallel_Backtrack(node, level+1)

node = Unmake_Move(node, i)

return



Distributed Termination Detection

• Suppose we only want to print one 

solution

• We want all processes to halt as soon as 

one process finds a solution

• This means processes must periodically 

check for messages

• Every process calls MPI_Iprobe every 

time search reaches a particular level 

(such as the cutoff depth)

• A process sends a message after it has 

found a solution 
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Simple (Incorrect) Algorithm

• A process halts after one of the following 

events has happened:

• It has found a solution and sent a message to 

all of the other processes

• It has received a message from another 

process

• It has completely searched its portion of the 

state space tree

2010@FEUP Parallel Algorithms - Combinatorial Search 33



Why Algorithm Fails

• If a process calls MPI_Finalize before 

another active process attempts to send it 

a message, we get a run-time error

• How this could happen?

• A process finds a solution after another 

process has finished searching its share 

of the subtrees

OR

• A process finds a solution after another 

process has found a solution
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Distributed Termination Problem

• Distributed termination problem: Ensuring 

that

• all processes are inactive AND

• no messages are en route

• Solution developed by Dijkstra, Seijen, and 

Gasteren in early 1980s
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Dijkstra et al.’s Algorithm

• Each process has a color and a message 

count

• Initial color is white

• Initial message count is 0

• A process that sends a message turns 

black and increments its message count

• A process that receives a message turns 

black and decrements its message count

• If all processes are white and sum of all 

their message counts are 0, there are no 

pending messages and we can terminate 

the processes
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Dijkstra et al.’s Algorithm (cont.)

• Organize processes into a logical ring

• Process 0 passes a token around the ring

• Token also has a color (initially white) and 

count (initially 0)
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Dijkstra et al.’s Algorithm (cont.)

• A process receives the token

• If process is black

• Process changes token color to black

• Process changes its color to white

• Process adds its message count to token’s 

message count

• A process sends

the token to its

successor in the

logical ring
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Dijkstra et al.’s Algorithm (cont.)

• Process 0 receives the token

• Safe to terminate processes if

• Token is white

• Process 0 is white

• Token count + process 0 message count = 0

• Otherwise, process 0 must probe ring of 

processes again
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Branch and Bound

• Variant of backtrack search

• Takes advantage of information about 

optimality of partial solutions to avoid 

considering solutions that cannot be 

optimal
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Example: 8-puzzle

1 2 3

4 5 6

7 8 Hole

This is the solution state.

Tiles slide up, down, or

sideways into hole.
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State Space Tree Represents Possible Moves
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Branch-and-bound Methodology

• Could solve puzzle by pursuing breadth-

first search of state space tree

• We want to examine as few nodes as 

possible

• Can speed search if we associate with 

each node an estimate of minimum 

number of tile moves needed to solve the 

puzzle, given moves made so far
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Manhattan (or City Block) Distance
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A Lower Bound Function

• A lower bound on number of moves 

needed to solve puzzle is sum of 

Manhattan distance of each tile’s current 

position from its correct position

• Depth of node in state space tree 

indicates number of moves made so far

• Adding two values gives lower bound on 

number of moves needed for any solution, 

given moves made so far

• We always search from node having 

smallest value of this function (best-first 

search)
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Best-first Search of 8-puzzle
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Pseudocode: Sequential Algorithm
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// initial – initial problem
// q – priority queue
// u, v – nodes of the search tree

Intialize (q)
Insert (q, initial)
repeat

u  Delete_Min (q)
if u is a solution then

Print_solution (u)
Halt

else
for i  1 to Possible_Constraints (u) do

Add constraint i to u, creating v
Insert (q, v)



Time and Space Complexity

• In worst case, lower bound function 

causes function to perform breadth-first 

search

• Suppose branching factor is b and 

optimum solution is at depth k of state 

space tree

• Worst-case time complexity is (b
k
)

• On average, b nodes inserted into priority 

queue every time a node is deleted

• Worst-case space complexity is (b
k
)

• Memory limitations often put an upper 

bound on the size of the problem that can 

be solved
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Parallel Branch and Bound

• We will develop a parallel algorithm 

suitable for implementation on a 

multicomputer or distributed 

multiprocessor

• Conflicting goals

• Want to maximize ratio of local to non-local 

memory references

• Want to ensure processors searching 

worthwhile portions of state space tree
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Single Priority Queue

• Maintaining a single priority queue not a 

good idea

• Communication overhead too great

• Accessing queue is a performance 

bottleneck

• Does not allow problem size to scale with 

number of processors
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Multiple Priority Queues

• Each process maintains separate priority 

queue of unexamined subproblems

• Each process retrieves subproblem with 

smallest lower bound to continue search

• Occasionally processes send unexamined 

subproblems to other processes
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Start-up Mode

• Process 0 contains original problem in its 

priority queue

• Other processes have no work

• After process 0 distributes an unexamined 

subproblem, 2 processes have work

• A logarithmic number of

distribution steps are sufficient

to get all processes engaged
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Efficiency

• Conditions for solution to be found and 

guaranteed optimal

• At least one solution node must be found

• All nodes in state space tree with smaller 

lower bounds must be explored

• Execution time dictated by which of these 

events occurs last

• This depends on number of processes, 

shape of state space tree, communication 

pattern
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Efficiency (cont.)

• Sequential algorithm searches minimum 

number of nodes (never explores nodes 

with lower bounds greater than cost of 

optimal solution)

• Parallel algorithm may examine 

unnecessary nodes because each process 

searching locally best nodes

• Exchanging subproblems

• promotes distribute of subproblems with good 

lower bounds, reducing amount of wasted work

• increases communication overhead
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Halting Conditions

• Distributed termination detection more 

complicated than for backtrack search

• Can only halt when

• Have found a solution

• Verified no better solutions exist
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Modifications to DTP Algorithm

• Process turns black if it manipulates an 

unexamined subproblem with lower bound 

less than cost of best solution found so far

• Add additional fields to termination token

• Cost of best solution found so far

• Solution itself (i.e., moves made to reach 

solution)
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Actions When Process Gets Token

• Updates token’s color, count fields

• If locally found solution better than one 

carried by token, updates token

• If lower bound of first unexamined 

problem in priority queue  best solution 

found so far, empties priority queue
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View Algorithm

http://paginas.fe.up.pt/~apm/CPAR/docs/ParBandB.pdf


Searching Game Trees

• Best programs for chess, checkers based 

on exhaustive search

• Algorithms consider series of moves and 

responses, evaluate desirability of 

resulting positions, and work their way 

back up search tree to determine best 

initial move
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Minimax Algorithm

• A form of depth-first search

• Value node = value of position from point 

of view of player 1

• Player 1 wants to maximize value of node

• Player 2 want to minimize value of node
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Illustration of Minimax
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Complexity of Minimax

• Branching factor b

• Depth of search d

• Examination of b
d

leaves

• Exponential time in depth of search

• Hence frequently cannot search entire 

tree to final positions

• Must rely on evaluation function to 

determine value of non-final position

• Space required = linear in depth of search

2010@FEUP Parallel Algorithms - Combinatorial Search 61



Alpha-Beta Pruning

• As a rule, deeper search leads to a higher 

quality of play

• Alpha-beta pruning allows game tree 

searches to go much deeper (twice as 

deep in best case)

• Pruning occurs when it is in the interests 

of one of the players to allow play to reach 

that position
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Illustration of Alpha-Beta Pruning
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Alpha-Beta Pruning Algorithm
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max_c – Maximum possible moves (children) of a position (node)

pos – position or node of the game tree

a, b – lower and upper values of cutoff;    cutoff – flag set when is OK to prune

depth – maximum search depth in the game tree

c[ 1 .. max.c ] – children of current position (node)

val – value of each position (point of view of the root player), 

width - nr. of legal moves  from the current position

Alpha_Beta(pos, a, b, depth)                        // initialy called with a = -  and    b = + 

if (depth <= 0)  return (Evaluate(pos))      // Evaluate terminal node  (point of view of the root player)

width = Generate_Moves(pos)                  // Fills array c [  ] 

if (width == 0)  return (Evaluate(pos))      // No more legal moves from this position

cutoff = FALSE;

i = 1

while (i <= width)  and  (cutoff == FALSE)

val = Alpha_Beta(c[ i ], a, b, depth-1)

if (Max_Node(pos) and val > a)                   // Root moves

a = val

if (Min_Node(pos) and val < b)                   // Opponent moves

b = val

if (a > b)

cutoff = TRUE

i ++

if (Max_Node(pos))  return a

else  return b



Enhancement Aspiration Search

• Ordinary alpha-beta algorithm begins with 

pruning window (–, ) (worst value, best 

value)

• Pruning increases as window shrinks

• Goal of aspiration search is to start 

pruning sooner

• Make estimate of value v of board position

• Figure probable error e of that estimate

• Call alpha-beta with initial pruning window

(v–e, v+e)

• If search fails, re-do with (–, v–e) or (v+e, 

) 
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Enhancement Iterative Deepening

• Ply: level of a game tree

• Iterative deepening: use a (d–1)-ply search 

to prepare for a d-ply search

• Allows time spent in a search to be 

controlled: can iterate deeper and deeper 

until allotted time has expired

• Can use results of (d–1)-ply search to help 

order nodes for d-ply search, improving 

pruning

• Can use value returned from (d–1)-ply 

search as center of window for d-ply

aspiration search

2010@FEUP Parallel Algorithms - Combinatorial Search 66



Parallel Alpha-Beta Search

• Perform move generation in parallel and 

position evaluation

• CMU’s custom chess machine

• Search the tree in parallel

• IBM’s Deep Blue

• Capable of searching more than 100 millions 

positions per second

• Defeated Gary Kasparov in a six-game match 

in 1997 by a score of 3.5 - 2.5
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Parallel Aspiration Search

• Create multiple windows, one per 

processor

• Allows narrower windows than with a 

single processor, increasing pruning

• Chess experiments: maximum expected 

speedup usually not more than 5 or 6

• This is because there is a lower bound on 

the number of nodes that will be searched, 

even with optimal search window
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Parallel Subtree Evaluation

• Processes examine independent subtrees 

in parallel

• Search overhead: increase in number of 

nodes examined through introduction of 

parallelism

• Communication overhead: time spent 

coordinating processes performing the 

search

• Reducing one kind of overhead is usually 

at expense of increasing other kind of 

overhead
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Game Trees Are Skewed

• In a perfectly ordered game tree the best 

move is always the first move considered 

from a node

• In practice, search trees are often not too 

far from perfectly ordered

• Such trees are highly skewed: the first 

branch takes a disproportionate share of 

the computation time
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Alpha-beta Pruning of a Perfectly Ordered Game Tree
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1 – type 1 nodes: root and first child of type 1 nodes

2 – type 2 nodes: other children of type1 nodes and children of

type 3 nodes

3 – type 3 nodes: first child of type 2 nodes

The other than the first child of a type 2 node can be pruned 



Distributed Tree Search

• Processes control groups of processors

• At beginning of algorithm, root process is 

assigned root node of tree and controls all 

processors

• Allocation of processors depends on 

location in search tree
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Distributed Tree Search (cont.)

• Type 1 node

• All processors initially allocated to search 

leftmost child of node

• When search returns, processors assigned to 

remaining children in breadth-first manner

• Type 2 or 3 node: processes assigned to children 

in breadth-first manner

• When a process completes searching a subtree, 

it returns its allocated processors to its parent 

and terminates

• Parents reallocate returned processors to 

children that are still active
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Performance of Distributed Tree Search

• Given a uniform game tree with branching 

factor b

• If alpha-beta algorithm searches tree with 

effective branching factor b
x
, then DTS 

with p processors will achieve a speedup 

of O(p
x
)

• Usually x is between 0.5 and 1
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Summary (1/5)

• Combinatorial search used to find solutions to a 

variety of discrete decision and optimization problems

• Can categorize problems by type of state space tree 

they traverse

• Divide-and-conquer algorithms traverse AND trees

• Backtrack search and Branch-and-Bound search 

traverse OR trees

• Minimax and alpha-beta pruning search AND/OR trees
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Summary (2/5)

• Parallel divide and conquer

• If problem starts on a single process and 

solution resides on a single process, then 

speedup limited by propagation and combining 

overhead

• If problem and solution distributed among 

processors, efficiency can be much higher, but 

balancing workloads can still be a challenge
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Summary (3/5)

• Backtrack search

• Depth-first search applied to state space trees

• Can be used to find a single solution or every 

solution

• Does not take advantage of knowledge about the 

problem to avoid exploring subtrees that cannot 

lead to a solution

• Requires space linear in depth of search (good)

• Challenge: balancing work of exploring subtrees 

among processors

• Need to implement distributed termination 

detection

2010@FEUP Parallel Algorithms - Combinatorial Search 77



Summary (4/5)

• Branch-and-bound search

• Able to use lower bound information to avoid 

exploration of subtrees that cannot lead to 

optimal solution

• Need to avoid search overhead without 

introducing too much communication overhead

• Also need distributed termination detection
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Search (5/5)

• Alpha-beta pruning:

• Preferred method for searching game trees

• Only parallel search of independent subtrees 

seems to have enough parallelism to scale to 

massively parallel machines

• Distributed tree search algorithm a way to 

allocate processors so that both search 

overhead and communication overhead are 

kept to a reasonable level
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