
Algorithms for Collective Communication

Design and Analysis of Parallel Algorithms

5DV050 Spring 2012



Outline

I One-to-all broadcast

I All-to-one reduction

I All-to-all broadcast

I All-to-all reduction

I All-reduce

I Pre�x sum

I Scatter

I Gather

I All-to-all personalized

I Improved one-to-all broadcast

I Improved all-to-one reduction

I Improved all-reduce



Corresponding MPI functions

Operation MPI function(s)

One-to-all broadcast MPI_Bcast

All-to-one reduction MPI_Reduce

All-to-all broadcast MPI_Allgather[v]

All-to-all reduction MPI_Reduce_scatter[_block]

All-reduce MPI_Allreduce

Pre�x sum MPI_Scan / MPI_Exscan

Scatter MPI_Scatter[v]

Gather MPI_Gather[v]

All-to-all personalized MPI_Alltoall[v|w]



Static interconnection networks
Examples of static interconnection topologies:

I Ring/linear array

I Mesh/torus

I Hypercube

I Tree

Examples of evaluation criteria:

Diameter Maximum distance between any pair of processors.
(Low is good.)

(Arc) Connectivity Minimum number of links that must be
removed in order to disconnect at least one processor.
Measures the mutliplicity of paths between nodes.
(High is good.)

Bisection width Minimum number of links that must be removed
to partition the network into two equal parts.

Bisection bandwidth Minimum volume of communication allowed
between any two halves of the network.



Ring topology

0 1 2 3

7 6 5 4

I Diameter: bp/2c
I Connectivity: 2

I Bisection width: 2



(2D) Mesh topology

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

I Diameter: 2(
√
p − 1)

I Connectivity: 2

I Bisection width:
√
p



(2D) Torus topology

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

I Diameter: 2
⌊√

p/2
⌋

I Connectivity: 4
I Bisection width: 2

√
p



(3D) Hypercube topology

000 100

010 110 001 101

011 111

I Diameter: log2 p

I Connectivity: log2 p

I Bisection width: p/2



Latency/bandwidth communication model

I Point-to-point message takes time ts + twm

I ts is the latency

I tw is the per-word transfer time (inverse bandwidth)

I m is the message size in # words



Contention

I Assume bi-directional links

I Each node can send and receive simultaneously

I Contention if a link is used by more than one message going in
the same direction

I k-way contention is modeled by dividing the available
bandwidth by k (continuous model) tw 7→ tw/k



One-to-all broadcast

M M M M M

Input:

I The message M is stored locally on the root

Output:

I The message M is stored locally on all processes



One-to-all broadcast
Ring

0 1 2 3

4567 1

2

2
3

3 3

3



One-to-all broadcast
Mesh

I Use ring algorithm on the root's mesh row
I Use ring algorithm on all mesh columns in parallel

0

1

2

3

4

5

6

7

8

9

a

b

c

d

e

f

1
2 2

3

4

4

3

4

4

3

4

4

3

4

4



One-to-all broadcast
Hypercube

I Generalize mesh algorithm to d dimensions

0 1

2 3

4 5

6 7

1

2

2

3

3

3

3



One-to-all broadcast
Algorithm

The algorithms described above are identical on all three topologies

1: Assume that p = 2d

2: mask← 2d − 1 (set all bits)
3: for k = d − 1, d − 2, . . . , 0 do

4: mask← maskXOR2k (clear bit k)
5: if meAND mask = 0 then

6: (lower k bits of me are 0)
7: partner← meXOR2k (partner has opposite bit k)
8: if meAND2k = 0 then

9: Send M to partner

10: else

11: Receive M from partner

12: end if

13: end if

14: end for



One-to-all broadcast

The preceeding broadcast algorithm is not general.

I What if p 6= 2d?
I Set d = dlog

2
pe and don't communicate if partner ≥ p

I What if the root is not process 0?
I Relabel the processes: me→ meXOR root

I Can we use both �xes simultaneously or not?



One-to-all broadcast
Runtime

I Number of steps: d = log2 p

I Time per step: ts + twm

I Total time: (ts + twm) log2 p

I In particular, note that broadcasting to p2 processes is only
twice as expensive as broadcasting to p processes since
log2 p

2 = 2 log2 p



All-to-one reduction

M0

M := M0 ⊕M1 ⊕M2 ⊕M3

M1 M2 M3 M

Input:

I The p messages Mk for k = 0, 1, . . . , p − 1

I The message Mk is stored locally on process k

I An associative reduction operator ⊕
I Typically, ⊕ ∈ {+,×,max,min}

Output:

I The �sum� M := M0 ⊕M1 ⊕ · · · ⊕Mp−1 stored on the root



All-to-one reduction
Algorithm

I Analogous to all-to-one broadcast algorithm

I Analogous runtime (plus the, often negligible, time to compute
a ⊕ b)

I Reverse order of communications

I Reverse direction of communications

I Combine incoming message with local message using ⊕



Matrix�vector multiplication
1: for i = 0, 1, . . . , n − 1 do
2: y(i)← 0
3: for k = 0, 1, . . . , n − 1 do
4: y(i)← y(i) + A(i , k) ∗ x(k)
5: end for
6: end for

Broadcast
R
ed
u
ce

y A

x

P0 P1 P2 P3

P4 P5 P6 P7

P8 P9 P10 P11

P12 P13 P14 P15

P0 P1 P2 P3

P0

P4

P8

P12



All-to-all broadcast

M0 M1 M2 M3 M0

M1

M2

M3

M0

M1

M2

M3

M0

M1

M2

M3

M0

M1

M2

M3

Input:

I The p messages Mk for k = 0, 1, . . . , p − 1

I The message Mk is stored locally on process k

Output:

I The p messages Mk for k = 0, 1, . . . , p − 1 are stored locally
on all processes

Equivalent to p concurrent one-to-all broadcasts



All-to-all broadcast
Ring

0 1 2 3

4567

(0) (1) (2) (3)

(4)(5)(6)(7)

(0) (1) (2)

(3)

(4)(5)(6)

(7)

0 1 2 3

4567

(0, 7) (1, 0) (2, 1) (3, 2)

(4, 3)(5, 4)(6, 5)(7, 6)

(0) (1)

(2)

(3)(4)(5)

(6)

(7)

and so on...

Step 1

Step 2



All-to-all broadcast
Ring algorithm

1: left← (me− 1) mod p

2: right← (me+ 1) mod p

3: result← Mme

4: M ← result

5: for k = 1, 2, . . . , p − 1 do
6: Send M to right

7: Receive M from left

8: result← result ∪M

9: end for

I The �send� is assumed to be non-blocking

I Lines 6�7 can be implemented via MPI_Sendrecv



All-to-all broadcast
Run time (ring)

I Number of steps: p − 1

I Time per step: ts + twm

I Total time: (p − 1)(ts + twm)



All-to-all broadcast
Mesh algorithm

The mesh algorithm is based on the ring algorithm:

I Apply the ring algorithm to all mesh rows in parallel

I Apply the ring algorithm to all mesh columns in parallel



All-to-all broadcast
Run time (mesh)

(Assuming a
√
p ×√p mesh for simplicity)

I Apply the ring algorithm to all mesh rows in parallel
I Number of steps:

√
p − 1

I Time per step: ts + twm

I Total time: (
√
p − 1)(ts + twm)

I Apply the ring algorithm to all mesh columns in parallel
I Number of steps:

√
p − 1

I Time per step: ts + tw
√
pm

I Total time: (
√
p − 1)(ts + tw

√
pm)

I Total time: 2(
√
p − 1)ts + (p − 1)twm



All-to-all broadcast
Hypercube algorithm

The hypercube algorithm is also based on the ring algorithm:

I For each dimension k of the hypercube in sequence:

I Apply the ring algorithm (which reduces to a pairwise
exchange) to the 2d−1 links in the current dimension in parallel

0 1

2 3

4 5

6 7

0 1

2 3

4 5

6 7

0 1

2 3

4 5

6 7



All-to-all broadcast
Run time (hypercube)

I Number of steps: d = log2 p

I Time for step k = 0, 1, . . . , d − 1: ts + tw2
km

I Total time:
∑d−1

k=0
(ts + tw2

km) = ts log2 p + tw (p − 1)m



All-to-all broadcast
Summary

Topology ts tw
Ring p − 1 (p − 1)m
Mesh 2(

√
p − 1) (p − 1)m

Hypercube log2 p (p − 1)m

I Note 1: Same transfer time (tw term)

I Note 2: The tw term is optimal since each process must
receive (p − 1)m words



All-to-all reduction

M0,0

M0,1

M0,2

M0,3

M1,0

M1,1

M1,2

M1,3

M3,0

M3,1

M3,2

M3,3

M2,0

M2,1

M2,2

M2,3

M0 M1 M3M2

Mr := M0,r ⊕M1,r ⊕M2,r ⊕M3,r

Input:

I The p2 messages Mr ,k for r , k = 0, 1, . . . , p − 1

I The message Mr ,k is stored locally on process r

I An associative reduction operator ⊕
Output:

I The �sum� Mr := M0,r ⊕M1,r ⊕ · · · ⊕Mp−1,r stored locally on
each process r

Equivalent to p concurrent all-to-one reductions



All-to-all reduction
Algorithm

I Analogous to all-to-all broadcast algorithm

I Analogous time (plus the time, which is often negligible, for
computing a ⊕ b)

I Reverse order of communications

I Reverse direction of communications

I Combine incoming message with a subset of the local message
using ⊕



All-reduce

M0 M1 M2 M3 M M M M

M := M0 ⊕M1 ⊕M2 ⊕M3

Input:

I The p messages Mk for k = 0, 1, . . . , p − 1

I The message Mk is stored locally on process k

I An associative reduction operator ⊕

Output:

I The �sum� M := M0 ⊕M1 ⊕ · · · ⊕Mp−1 stored locally on all
processes

Equivalent to one-to-all reduction followed by

one-to-all broadcast



All-reduce
Algorithm

I Analogous to all-to-all broadcast algorithm

I Combine incoming message with local message using ⊕

I Cheaper since the message size does not grow

I Total time: (ts + twm) log2 p



Pre�x sum

M0 M1 M2 M3 M (0) M (1) M (2) M (3)

M (k) := M0 ⊕M1 ⊕ · · · ⊕Mk

Input:

I The p messages Mk for k = 0, 1, . . . , p − 1

I The message Mk is stored locally on process k

I An associative reduction operator ⊕

Output:

I The �sum� M(k) := M0 ⊕M1 ⊕ · · · ⊕Mk stored locally on
process k for all k



Pre�x sum: Example

1

1

2

3

3

6

4

10

5

15

6

21

7

28

8

36

9

45

Input

Output



Pre�x sum
Algorithm

I Analogous to all-reduce algorithm

I Analogous time

I Locally store only the corresponding partial sum



Scatter

M0

M1

M2

M3

M0 M1 M2 M3

Input:

I The p messages Mk for k = 0, 1, . . . , p − 1 stored locally on
the root

Output:

I The message Mk stored locally on process k for all k



Scatter
Algorithm

I Analogous to one-to-all broadcast algorithm

I Send half of the messages in the �rst step, send one quarter in
the second step, and so on

I More expensive since several messages are sent in each step

I Total time: ts log2 p + tw (p − 1)m



Gather

M0

M1

M2

M3

M0 M1 M2 M3

Input:

I The p messages Mk for k = 0, 1, . . . , p − 1

I The message Mk is stored locally on process k

Output:

I The p messages Mk stored locally on the root



Gather
Algorithm

I Analogous to scatter algorithm

I Analogous time

I Reverse the order of communications

I Reverse the direction of communications



All-to-all personalized

M0,0

M0,1

M0,2

M0,3

M1,0

M1,1

M1,2

M1,3

M3,0

M3,1

M3,2

M3,3

M2,0

M2,1

M2,2

M2,3

M0,0 M0,1 M0,2 M0,3

M1,0 M1,1 M1,2 M1,3

M3,0 M3,1 M3,2 M3,3

M2,0 M2,1 M2,2 M2,3

Input:

I The p2 messages Mr ,k for r , k = 0, 1, . . . , p − 1

I The message Mr ,k is stored locally on process r

Output:

I The p messages Mr ,k stored locally on process k for all k



All-to-all personalized
Summary

Topology ts tw
Ring p − 1 (p − 1)mp/2
Mesh 2(

√
p − 1) p(

√
p − 1)m

Hypercube log2 p m(p/2) log2 p

I The hypercube algorithm is not optimal with respect to
communication volume (the lower bound is twm(p − 1))



All-to-all personalized
An optimal (w.r.t. volume) hypercube algorithm

Idea:

I Let each pair of processes exchange messages directly

Run time:

I (p − 1)(ts + twm)

Question:

I In which order do we pair the processes?

Answer:

I In step k , let me exchange messages with meXOR k

I Amazingly, the messages can be routed without contention!



All-to-all personalized: Optimal algorithm
Communication pattern for p = 8

1 2 3

4 5 6

7



All-to-all personalized
An optimal hypercube algorithm based on E-cube routing

0 1

2 3

4 5

6 7

0 1

2 3

4 5

6 7

0 1

2 3

4 5

6 7

0 1

2 3

4 5

6 7

0 1

2 3

4 5

6 7

0 1

2 3

4 5

6 7

0 1

2 3

4 5

6 7



All-to-all personalized
E-cube routing

I Routing from s to t := s XOR k in step k

I The di�erence between s and t is

s XOR t = s XOR(s XOR k) = k

I The number of links to traverse equals the number of 1's in the
binary representation of k (the so-called Hamming distance)

I E-cube routing: route through the links according to some
arbitrary (but �xed) ordering of the dimensions



All-to-all personalized
E-cube routing

Why does E-cube routing work?

I Write
k = k1 XOR k2 XOR · · ·XOR kn

such that
I kj has exactly one set bit
I ki 6= kj for all i 6= j

I Step i :
r 7→ r XOR ki

and hence uses the links in one dimension without congestion.

I After all n steps we have as desired:

s 7→ s XOR k1 XOR · · ·XOR kn = s XOR k = t



All-to-all personalized
E-cube routing example

I Route from s = 1002 to t = 0012 = s XOR1012

I Hamming distance (i.e., # links): 2

I Write
k = 1012 = 0012 XOR1002 = k1 XOR k2

I E-cube route:

s = 1002 → 1012 → 0012 = t



Matrix transposition

1: for i = 0, 1, . . . , n − 1 do
2: for k = 0, 1, . . . , n − 1 do
3: B(k , i)← A(i , k)
4: end for
5: end for

P3

P2

P1

P0

Maps to an all-to-all personalized operation



Summary
Hypercube

Operation Time

One-to-all broadcast (ts + twm) log2 p
All-to-one reduction (ts + twm) log2 p

All-reduce (ts + twm) log2 p
Pre�x sum (ts + twm) log2 p

All-to-all broadcast ts log2 p + tw (p − 1)m
All-to-all reduction ts log2 p + tw (p − 1)m

Scatter ts log2 p + tw (p − 1)m
Gather ts log2 p + tw (p − 1)m

All-to-all personalized (ts + twm)(p − 1)



Improved one-to-all broadcast
Applies when m� p

1. Scatter

2. All-to-all broadcast



Improved one-to-all broadcast
Run time

Old algorithm:

I Total time: (ts + twm) log2 p

New algorithm:

I Scatter: ts log2 p + tw (p − 1)(m/p)

I All-to-all broadcast: ts log2 p + tw (p − 1)(m/p)

I Total time: 2ts log2 p + 2tw (p − 1)(m/p) ≈ 2ts log2 p + 2twm

Comparison with previous algorithm:

I ts term: twice as large

I tw term: reduced by a factor ≈ (log2 p)/2



Improved all-to-one reduction
Applies when m� p

2. Gather

1. All-to-all reduction



Improved all-to-one reduction
Run time

I Analogous to improved one-to-all broadcast

I ts term: twice as large

I tw term: reduced by a factor ≈ (log2 p)/2



Improved all-reduce
Applies when m� p

All-reduce = One-to-all reduction + All-to-one broadcast

2. Gather

1. All-to-all reduction

3. Scatter

4. All-to-all broadcast

...but gather followed by scatter cancel out!



Improved all-reduce

1. All-to-all reduction

2. All-to-all broadcast



Improved all-reduce
Run time

I Analogous to improved one-to-all broadcast

I ts term: twice as large

I tw term: reduced by a factor ≈ (log2 p)/2


